Tectonophysics and Geodynamics research group

Department of Mathematics and Geosciences

University of Trieste

Via Edoardo Weiss, 1 34128 Trieste (Italy)

This is a temporary, minimal, group homepage. It is pending update and integration.


Research topics

Gravity, gravimetry and applications to exploration geophysics

We deal with the methodological and application aspects of 3-D modelling and inversion of gravity data. Different approaches are used, which include spectral methods in the flat- and spherical-domain, upward-downward continuation methods, iterative methods, direct modeling by simple geometric objects or polyhedral objects, data reduction (topography, sedimentary basins). Another topic of interest is the depth-of-source retrieval. Range of applications: from small superficial anomalies (e.g. caves) of prospecting and environmental interest to deep, extensive regional structure. Both terrestrial, shipborne and satellite derived gravity measurements are used and integrated with other observables.

Selected application examples

  • 3-D modelling of the south-Alpine foredeep through the integration of gravity, tomography, petrologic modelling:
    • Tadiello, D. and Braitenberg C. (2021). Gravity modeling of the Alpine lithosphere affected by magmatism based on seismic tomography, Solid Earth, 12, 539–561, doi:10.5194/se-12-539-2021
  • Joint regression analysis of topography and gravity, allowing clustering of the response to the lithosphere characteristics and aparametric residualization:
    • Pivetta, T., Braitenberg, C. (2020). Sensitivity of gravity and topography regressions to earth and planetary structures. Tectonophysics, 774, 228299. doi:10.1016/j.tecto.2019.228299
  • Mineral prospecting in metallogenic districts:
    • Hühn, S.R.B., Silva, A.M., Ferreira, F.J.F., Braitenberg, C. (2020). Mapping New IOCG Mineral Systems in Brazil: The Vale do Curaçá and Riacho do Pontal Copper Districts. Minerals 10, 1074. doi:10.3390/min10121074
  • Indirect geothermal estimates using a GOCE-derived crustal model and a lean thermal solver:
    • Pastorutti, A., Braitenberg, C. (2019). A geothermal application for GOCE satellite gravity data: modelling the crustal heat production and lithospheric temperature field in Central Europe. Geophysical Journal International, 219(2), 1008–1031. doi:10.1093/gji/ggz344
  • AlpArray: Gravity research group. Delivered a homogeneous gravity dataset across the Alpine area, of unprecedented quality and spatial coverage. Collection, management and processing of the Italy datasets (> 100000 on- and off-shore measurement).
    • Zahorec, P., Papčo, J., Pašteka, R., Bielik, M., Bonvalot, S., Braitenberg, C., Ebbing, J., Gabriel, G., Gosar, A., Grand, A., Götze, H.-J., Hetényi, G., Holzrichter, N., Kissling, E., Marti, U., Meurers, B., Mrlina, J., Nogová, E., Pastorutti, A., Salaun, C., Scarponi, M., Sebera, J., Seoane, L., Skiba, P., Szűcs, E., Varga, M. (2021). The first pan-Alpine surface-gravity database, a modern compilation that crosses frontiers. Earth System Science Data, 13(5), 2165–2209. doi:10.5194/essd-13-2165-2021

Transversal aspects

Mineral prospecting: social and economic issues. Cooperation with Prof. Simone Arnaldi (Department of Political and Social Sciences, UNITS) and Prof. Giuseppe Borruso (Department of Economics, Business, Mathematics and Statistics, UNITS).

Signal simulation for the Next Generation Gravity Missions requirements

[topic description undergoing update]

Selected projects

  • ASI MOCAST+ MOnitoring mass variations by Cold Atom Sensors and Time measures. MOCAST + is a study funded by the Italian Space Agency (ASI) with Call 2018. The study proposes an “enhanced” Cold Atom Interferometer (CAI) instrument consisting of a gravitational interferometry gradiometer with ultra-cold atoms, on which an optical frequency measurement using an ultra-stable laser is implemented, which also provides time measurements. This would lead to an improvement of the gravity model even at low harmonic degrees and its temporal variations, with advantages in the modeling of mass transport and its global variations: fundamental information e.g. in the study of the variations in the hydrological cycle and of the relative mass exchange between atmosphere, oceans, cryosphere and solid earth.
    • Pivetta, T., Braitenberg, C., Pastorutti, A. (2022.) Sensitivity to Mass Changes of Lakes, Subsurface Hydrology and Glaciers of the Quantum Technology Gravity Gradients and Time Observations of Satellite MOCAST+. Remote Sensing 14(17) 4278. doi:10.3390/rs14174278
    • Rossi, L.; Reguzzoni, M.; Koç, Ö.; Migliaccio, F. (2022, under review) Assessment of Gravity Field Recovery from a Quantum Satellite Mission with Atomic Clocks and Cold Atom Gradiometers. Quantum Sci. Technol. Spec. Issue Cold At. Space.
  • ASI MOCASS Mass Observation with Cold Atom Sensors in Space proposal of a GOCE‐like quantum gravimetry mission. Payload: Cold Atom Interferometer (CAI) on board a satellite on low Earth orbit, observables: second derivatives of the geo‐potential (gradients).
    • Migliaccio, F., Reguzzoni, M., Batsukh, K., Tino, G. M., Rosi, G., Sorrentino, F., … Zoffoli, S. (2019). MOCASS: A Satellite Mission Concept Using Cold Atom Interferometry for Measuring the Earth Gravity Field. Surveys in Geophysics, 40(5), 1029–1053. doi:10.1007/s10712-019-09566-4
    • Reguzzoni, M., Migliaccio, F., Batsukh, K. (2021). Gravity Field Recovery and Error Analysis for the MOCASS Mission Proposal Based on Cold Atom Interferometry. Pure and Applied Geophysics, 178(6), 2201–2222. doi:10.1007/s00024-021-02756-5
    • Pivetta, T., Braitenberg, C., Barbolla, D. F. (2021). Geophysical Challenges for Future Satellite Gravity Missions: Assessing the Impact of MOCASS Mission. Pure and Applied Geophysics, 178(6), 2223–2240. doi:10.1007/s00024-021-02774-3
  • ESA GOCE User toolbox (2013-2015)
  • defining science user needs for future satellite gravity observing system, IAG sub-commissions 2.3 and 2.6, under IUGG (2013-2015)
    • Pail, R., Bingham, R., Braitenberg, C., Dobslaw, H., Eicker, A., Güntner, A., Horwath, M., Ivins, E., Longuevergne, L., Panet, I., Wouters, B. (2015). Science and User Needs for Observing Global Mass Transport to Understand Global Change and to Benefit Society. Surveys in Geophysics, 36(6), 743–772. doi:10.1007/s10712-015-9348-9

Regional-scale geodynamics, thermal and rheological structure of the lithosphere

[topic description undergoing update]

Selected application examples

  • Natale Castillo, M. A., Tesauro, M., Cacace, M. (2022) How does seismic attenuation correlate to rheology of crustal rocks? Results from a numerical approach. Global and Planetary Change. doi:10.1016/j.gloplacha.2022.103978
  • Maddaloni, F., Tesauro, M., Gerya, T. V., Pastorutti, A., Braitenberg, C., Delvaux, D., Munch, J. (2022). Effects of multi-extensional tectonics in a cratonic area: 3D numerical modeling and implications for the Congo Basin. Gondwana Research. doi:10.1016/j.gr.2022.09.002
  • Kaban, M. K., Delvaux, D., Maddaloni, F., Tesauro, M., Braitenberg, C., Petrunin, A. G., El Khrepy, S. (2021). Thickness of sediments in the Congo basin based on the analysis of decompensative gravity anomalies. Journal of African Earth Sciences, 179(February 2020), 104201. doi:10.1016/j.jafrearsci.2021.104201
  • Delvaux, D., Maddaloni, F., Tesauro, M., Braitenberg, C. (2021). The Congo Basin: Stratigraphy and subsurface structure defined by regional seismic reflection, refraction and well data. Global and Planetary Change, 198(December 2020), 103407. doi:10.1016/j.gloplacha.2020.103407
  • Maddaloni, F., Pivetta, T., Braitenberg, C. (2021). Gravimetry and petrophysics for defining the intracratonic and rift basins of the western-central Africa zone. GEOPHYSICS, 86(6), 1–68. doi:10.1190/geo2019-0522.1

Hydrogeological studies with terrain and space geodesy

Subsurface water movement monitoring is a challenging task, dealing with complex drainage systems and the difficulty in sensing the involved obserables, with a reliable network of continuous observations. We are addressing this problem with gravimetry and space-borne Interferometric Synthetic Aperture Radar, alongside traditional tilt- and strain-meter measurements and GNSS.

Spring and super-conducting gravimeters offer a proven complement to direct hydrologic measurements, enabling the characterization of karstic systems in which the recharge process causes accumulation of large water volumes in the voids of the epiphreatic system.

Differential Interferometric Synthetic Aperture Radar (DInSAR) proves to be an excellent tool for measuring the crustal deformation in different circumstances, such as co-seismic deformation, landslides and subsidence. Different approaches are needed to retrieve this data, ranging from a single interferometric pair to big-data time serie analysis. Among the issues under investigation, the non-trivial task of atmospheric noise correction is being assessed, pursuing the recovery of signals smaller than the expected atmospheric noise and the identification of potentially misinterpreted artefacts.

One of our current core topics is the measurement of surface deformation triggered by overpressure of underground water in karst areas, occurring where caves and channels are filled as a consequence of sudden and heavy rainfall. It build upon our expertise in ground-based monitoring of deformations with tilt- and strain-meter networks, which alongside with GPS has already shown a huge potential in hydrogeological modelling.

Selected application examples

  • Pivetta, T., Braitenberg, C., Gabrovšek, F., Gabriel, G., and Meurers, B. (2021). Gravity as a tool to improve the hydrologic mass budget in karstic areas, Hydrol. Earth Syst. Sci., doi:10.5194/hess-25-6001-2021
  • Braitenberg, C., Pivetta, T., Barbolla, D. F., Gabrovšek, F., Devoti, R., Nagy, I. (2019). Terrain uplift due to natural hydrologic overpressure in karstic conduits. Scientific Reports, 9(1), 1–10. doi:10.1038/s41598-019-38814-1

Crustal deformations and multi-decadal geodetical monitoring

The group manages the Grotta Gigante horizontal pendulums and the Friuli tilt-strain network of instruments. The wealth of deformational data that is being collected provide an extraordinary insight on the anistropies of the uppermost Earth’s crust in the area, on the signals from sudden underground flooding due to extreme rainfall, on years-long fluid diffusion transients due to peculiar fault behavior, and on the free oscillation arising from megathrust earthquakes. These multi-decadal time series provide ongoing measurements of tilt and crustal deformation, at an accuracy and precision which space-borne geodesy cannot provide. Since only point measurements are provided, in locations where stations could be set up, we are aiming at enabling their integration with LoS displacement obtained through Differential Interferometric Synthetic Aperture Radar (DInSAR).

In detail: geodetical monitoring network, includes extensive bibliography.

Recent application examples

  • Rossi, G., Pastorutti, A., Nagy, I., Braitenberg, C., Parolai, S. (2021). Recurrence of Fault Valve Behavior in a Continental Collision Area: Evidence From Tilt/Strain Measurements in Northern Adria. Frontiers in Earth Science, 9. doi:10.3389/feart.2021.641416
  • Grillo, B., Braitenberg, C., Nagy, I., Devoti, R., Zuliani, D., Fabris, P. (2019). Cansiglio Karst Plateau: 10 Years of Geodetic–Hydrological Observations in Seismically Active Northeast Italy (pp. 171–187). Pure and Applied Geophysics, Topical Volumes. doi:10.1007/978-3-319-96277-1_14