PhD IN
EARTH SCIENCE, FLUID-DYNAMICS AND MATHEMATICS. INTERACTIONS AND METHODS
OVERVIEW

| IN BRIEF |
|---|---|
| **Lines of research** | 1 Environmental fluid mechanics, fluid mechanics in industrial and technological processes, and in biological systems
2 Solid and fluid earth geophysics and geology
3 Mathematical methods and modeling in fluid mechanics and in geophysics, differential equations and inverse problems: qualitative, computational, and numerical aspects
4 Development and use of Data Science techniques, both for the construction of statistical big-data black-box models and for the analysis of complex models by using machine learning methods |
Administrative location	University of Trieste
Organizing Department	Department of Mathematics and Geosciences
Partner University Department	Department of Engineering and Architecture
Duration	3 years
Attendance abroad that entitles to a scholarship increase - min. max. of months for each PhD student (over 3 years)	3 - 12
Official language	English
	The entrance exams, training activities (courses, seminars, schools…), the preparation of annual reports, the drafting and defense of the thesis are to be given in English.
Subject Areas	01 MATHEMATICS AND INFORMATICS
04 EARTH SCIENCES	
08b CIVIL ENGINEERING	
09 INDUSTRIAL AND INFORMATION ENGINEERING	
Macro Research Fields	01/A MATHEMATICS
01/B INFORMATICS	
04/A EARTH SCIENCES	
08/A LANDSCAPE AND INFRASTRUCTURAL ENGINEERING	
09/C ENERGY, THERMOMECHANICAL AND NUCLEAR ENGINEERING	
09/G SYSTEMS ENGINEERING AND BIOENGINEERING	
Scientific Disciplinary Sectors	GEO/01 PALAEOECOLOGY AND PALAEOECOLOGY
GEO/02 STRATIGRAPHY AND SEDIMENTOLOGY
GEO/03 STRUCTURAL GEOLOGY
GEO/04 PHYSICAL GEOGRAPHY AND GEOMORPHOLOGY |
WHO’S WHO

Chair
Prof. Stefano Maset – Department of Mathematics and Geosciences – University of Trieste – phone + 39 040.558.2675; email maset@units.it

Vice
Prof. Paolo Novati – Department of Mathematics and Geosciences – University of Trieste – phone + 39 040.558.2643; email novati@units.it

PhD Academic Board
[List of members](https://web.units.it/dottorato/esfm/en)

Web site
https://web.units.it/dottorato/esfm/en

Courses and seminars
https://web.units.it/dottorato/esfm/sites/default/files/all_pagb/Courses%20ESFM%2037%20cycle.pdf

Email
esfm.adm@units.it

Course description and objectives

This PhD Course aims at the advanced training of students in the field of the Earth System Science, through a multidisciplinary approach, where specific skills integrate with modeling and computational tools that allow to effectively tackle complex problems. Special attention is devoted to the interactions between Mathematics, Scientific Computing, Data Science, Fluid Dynamics, and Earth Sciences. Within Earth Science, advanced methods of investigation are developed in geological, geophysical, atmospheric, oceanographic, and climatological fields. Special attention is paid to issues related to reduction of natural risks, finding of geo-resources, and climate changes.

In the context of fluid mechanics, the study of motion of the fluids is mainly addressed with reference to their transport properties, dispersion and mixing in environmental, industrial, biological processes, as well as to their interaction with...
the solid elements.

The laws, which these disciplines are based on, are generally expressed by highly complex mathematical models. The qualitative and quantitative study of such models requires the development and the application of sophisticated mathematical tools, and it represents a relevant and topical research field even from the mathematical point of view. Mathematics therefore pervades the entire program, playing a central and unifying role.

Job placement opportunities

This PhD course is designed to prepare students to pursue different careers in research, teaching and industrial use of high technologies in the fields of earth science, fluid mechanics, applied mathematics, and their interactions.

The students will be in contact with several local and international environments and gain an important experience in both theoretical and applied problems that originate in the disciplines mentioned above. In addition, the students will develop familiarity and competence in using the most advanced tools (both modeling and experimental) for the analysis of complex physical systems, which will be of great use for future activity in public or private research centers, or for any work in companies with high technological content.

The Doctoral School of Environmental and Industrial Fluid Mechanics, which the present course is a natural continuation and expansion of, have systematically partnered during the last ten years with the departments of several research institutions and services, such as OGS, ICTP, ISMAR-CNR, ENEA, ARPA-FVG, as well as with various industries in the area. The scholarships funded by such institutions, or factories, and their very presence, stem from their need to acquire highly specialized personnel in the topics addressed in this doctoral program. The students of this course will then have, as a natural outlet, post-doctoral grants, or employments, within the organizations themselves.

Main cooperating international Universities and Research Institutions

1. Princeton University, USA
2. University of California Irvine, USA
3. University of Oxford, United Kingdom
4. University of Cambridge, United Kingdom
5. New York University, USA