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ABSTRACT. In this paper we review some ways of producing non-mo-
notonic logics by considering context-sensitive inferences. These ap-
proaches are all based on the notion of control set, a piece of logical ma-
chinery recently introduced in [3] and further developed in [7, 4, 14]. A
control set informally refers to a set of contexts S which are supposed to
prohibit the implementation of specific inferences in a proof system.
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1. Introduction

In this paper we survey three non-monotonic calculi, CSI, σCSI and LKS , re-
cently introduced in [3], [7] and [14], respectively. Each one of them is obtained
from well-known logical systems (CSI and σCSI are variants of the multiplica-
tive fragment of linear logic [10, 13], while LKS is a fragment of classical
propositional logic) by stressing the notion of control set and the relative notion
of compatibility. Informally speaking, a control set S = {Γ1, . . . ,Γn} is a finite
set of logical contexts which are supposed to block specific inferences in a proof
system. A context ∆ is said to be compatible with S, if ∆ does not include any
context in S.

In order to better appreciate how control sets constrain the dynamics of log-
ical proofs, let’s consider a couple of examples, one coming from biochemistry
and the other from medical reasoning.

In biochemistry the empirical evidence supports the following fact: an en-
zyme E binds with a substratum S provided that an inhibitor I is not present in
the same environment at the very moment of the reaction [2]. Let’s denote with
Γ the set of reactants present in the environment. We can formalize this fact by
means of the following controlled axiom

Γ,E,S `{{I}} E�S

to be read as follows: E and S binds so as to form the compound E�S provided
that {I}* Γ, i.e., the inhibitor I is not present in the environment.

Once formalized, the concurrent enzyme inhibition phenomenon becomes a
clear example of logical non-monotonicity. In classical and intuitionistic logic,
the monotonicity property is guaranteed by the weakening rule

Γ ` A weak `
Γ,B ` A

saying that whenever the formula A is derivable from the set of assumptions Γ,
A is still derivable when Γ is enriched with any formula B. In our case, this
inference is no longer valid since the following instance of the weakening rule
returns an (empirically) invalid sequent:

E,S ` E�S
weak `.E,S, I ` E�S
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The key point to understand is that the control sets mechanism allows us to
preserve soundness along derivations in such a way that the transition from
E,S `{{I}} E � S to E,S, I `{{I}} E � S is no longer admissible since the con-
text {E,S, I} is incompatible with the control set {{I}}.

Similar situations are pervasive in many other empirical settings. Let’s con-
sider, for instance, the problem of algorithmically prescribing medications in
medical reasoning. For instance, it is known that people suffering from dengue
should not take aspirin because it can aggravate bleeding. Here is the rule of
thumb: aspirin is recommended for flu-like symptoms, unless they are caused by
dengue. In our approach, this protocol can be easily formalized by the following
sequent:

Γ,flu-like symptoms `{{dengue}} aspirin.

The singleton {{dengue}} is the control set which constraints the soundness of
the sequent: from flu-like symptoms one can derive aspirin, provided that the
context Γ does not contain the information dengue. Thus, when flu-like symp-
toms is associated with dengue, the conclusion aspirin is no longer derivable.
Accordingly, the sequent below turns out to be unsound:

Γ
′,dengue, flu-like symptoms `{{dengue}} aspirin.

The control sets-based approach clearly reminds of standard treatments of
similar situations by means of default rules [15, 1]. In spite of the obvious re-
semblances, the control sets approach differs from standard default reasoning in
two main respects. First, controlled systems allow for a satisfactory proof the-
oretical presentation. As we shall see Sections 2 and 3, both the calculi σCSI−

and LKS enjoy the cut-elimination theorem and so the subformula property.
Second, in our framework, non-monotonicity is just a byproduct of the fact that
controlled systems are equipped with a set of proper axioms which are supposed
to encode the extra-logical information coming from the specific empirical con-
text under consideration. As a part of their specific extra-logical content, proper
axioms also undertake the task of introducing in a derivation non-trivial control
sets. Proper axioms are in this way thought of as the interface between logic
and empirical world, and so they are subject to continue revisions and updating.
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2. The CSI sequent calculus

In this and in the following sections, we take logical contexts Γ,∆, . . . as multiset
of formulas. In order to distinguish ordinary sets from multisets, we will use
curly brackets for the former and square brackets for the latter.

Definition 1 (formulas) CSI formulas are inductively defined as follows:

• set of atoms A = {a,b,c, . . .},

• bonding language F� ::= A |F��F�,

• logical language F ::= F� |F ⊗F .

Technically speaking, the bonding operator is not a logical connective, since
the CSI sequent calculus does not encompass any specific rule for introduc-
ing it. This is the reason why the bonding language is considered as uniquely
formed by atomic types and so the set of CSI atomic formulas is, indeed, given
by F�. Types are supposed to bind two by two and so the reason why nesting
an independent bonding language into the language of CSI is that of avoiding
meaningless propositions like (A⊗B)� (C⊗D).

Definition 2 (control sets) A control set is a finite set of finite multisets of for-
mulas {Γ1, . . . ,Γn} such that, for all 1 6 i 6 n, Γi ⊂F�. The empty set ∅ is a
control set. Control sets are denoted by boldface capital letters S,T,U, . . ..

Definition 3 (contexts, subcontexts, supports) Precontexts are rooted trees re-
cursively defined as follows:

• F is a set of precontexts,

• if T1, . . . ,Tn are precontexts, then (T1, . . . ,Tn) is a precontext.

A CSI context C is an ordered pair 〈T, f 〉 such that T is a precontext and f a
function which assigns a control set to each node of T other than its leaves.

The set of the subcontexts of C = 〈T, f 〉 is given by the set of contexts
C ′ = 〈T ′, f ′〉 such that T ′ is a proper subtree of T and f ′ is the function obtained
by restricting the domain of f to set of the T ′-nodes. By C [D ] we mean that D
occurs as a subcontext of C . |C | denotes the support of C , namely the multiset
of formulas labelling the leaves of C .
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Contexts are written by stressing the usual compact notation through nested
parentheses. In order to represent the additional information encoded by the
function f , right parentheses come indexed with a control set.

Loosely speaking, a CSI context is nothing else but a rooted tree having
the leaves single-labelled with a formula from F and the other nodes double-
labelled with both a precontext and a control set. It is worth noting that the
unrestricted tree structure of sequents allows us to generalise the classical ap-
proach to logical non-associativity based on binary trees [9, 8]. Moreover, as we
shall see in a moment, the monotonicity of derivations is specifically modulated
by the information associated with precontexts by the function f .

Definition 4 (immediately acting formulas) A formula A is said to be imme-
diately acting in a context C if A labels a leaf of C which is directly connected
with the root. For any context C , the multiset imac(C ) collects all the immedi-
ately acting formulas of C .

Example 5 The tree structure of the context C = (A,(C,D,(E)U)T,B)S is dis-
played in Figure 1. (C,D,(E)U)T and (E)U are the subcontexts of C . In or-
der to exemplify the notion of immediately acting formula, let’s notice that
imac(C ) = {A,B}.

S

T

U

A B

C D

E

(E)

(C, D, (E))

(A, (C, D, (E)), B)

FIG. 1: The tree-structure of the context C = (A,(C,D,(E)U)T,B)S.
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INFERENCE SCHEMATA

Axiom:

ax.
(A)∅ ` A

Cut-rules:

C [(C1, . . . ,Cn,A)S] ` B D ` A
surgical cut

C ′[(C1, . . . ,Cn,D)S] ` B

C [(C1, . . . ,Cn,A)S] ` B (D1, . . . ,Dm)T ` A
deep cut†

C ′[(C1, . . . ,Cn,D1, . . . ,Dm)S∪T] ` B

(†) provided that (imac(C1 . . . ,Cn,D1, . . . ,Dm))
? ‖ S∪T

Structural rules:

C [(D1, . . . ,Dn,H ,K )S] ` A ×change
C ′[(D1, . . . ,Dn,K ,H )S] ` A

Multiplicative conjunctions:

C [(D1, . . . ,Dn,A,B)S] `C ⊗L
C ′[(D1, . . . ,Dn,A⊗B)S] `C

C ` A D ` B ⊗R
(C ,D)∅ ` A⊗B

(C1, . . . ,Cn)S ` A (D1, . . . ,Dm)T ` B
deep-⊗‡

R(C1, . . . ,Cn,D1, . . . ,Dm)S∪T ` A⊗B

(‡) provided that (imac(C1 . . . ,Cn,D1, . . . ,Dm))
? ‖ S∪T

SET OF PROPER AXIOMS

Axioms of type σ : Axioms of type ρ:

σi
(E⊗F)Si ` E�F

ρi
(E�F)∅ ` G⊗H

TABLE 1: The CSI sequent calculus.
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Definition 6 For any A ∈F , A? denotes the multiset of atomic formulas occur-
ring in A. The ?-operation can be straightforwardly extended to any multiset of
formulas Γ as follows: Γ? =

⋃
A∈Γ A?.

Definition 7 (compatibility) A multiset of formulas ∆ is said to be compatible
with a control set S = {Γ1, . . . ,Γn} — in symbols, ∆ ‖ S — if, for all Γi ∈ S,
Γi * ∆?.

Definition 8 (monotonicity soundness) A context C is said to be monotoni-
cally sound in case that, for any subcontext D of C , (imac(D)) ‖ T where T is
the control set attached to the root of D .

Definition 9 (sequents, related notions) A CSI sequent is an ordered pair 〈C ,A〉
such that C is a CSI context and A ∈F . Following the usual logical notation,
a sequent 〈C ,A〉 will be henceforth written as C ` A. Formulas in |C | are the
premises of the sequent and A the conclusion.

Definition 10 (proofs) A CSI proof is a sequence of CSI sequents such that
each sequent is derivable from the sequents appearing earlier in the sequence by
means of the rules displayed in Table 1.

Figures 2 and 3 illustrate the basic combinatorics on contexts respectively
induced by the two right tensor rules (⊗R and deep-⊗R) and the two cut rules
(surgical and deep).

Together with the familiar inference schemata, the deductive apparatus of
CSI comes equipped with a set of proper axioms encoding the information ac-
quired in the specific empirical context we are concerning with. Unlike infer-
ence schemata which provide a general pattern of inference, proper axioms refer
to specific types. To clarify this point, let’s refer again to biochemistry. Suppose
that for a certain i ∈ N the axiom σi expresses the fact that two molecules of
hydrogen bind so as to form the compound H2 ≡ H�H:

σi.
(H⊗H)Si ` H�H

The axiom σi does not mean that, for any type A ∈F , A⊗A ` A�A: it just
says that, for the specific type H, we have empirical evidence allowing us to
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FIG. 2: Tensor combinatorics on trees.
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FIG. 3: Cut combinatorics on trees.

10



HOW TO GO NON-MONOTONIC THROUGH CONTEXT-SENSITIVENESS

state H ⊗H ` H �H. Being our empirical information finite, CSI proper ax-
ioms are conceived as finite in number. According to [2], proper axioms are
partitioned into two classes: the set of σ -axioms {σ1, . . . ,σn} and the set of
ρ-axioms {ρ1, . . . ,ρm}. Such a distinction can be explained by dwelling again
on biochemistry: whereas σ -axioms essentially describe how molecules bind to
each other, ρ-axioms carry the specific information about the possible biochem-
ical decay of compounds.

From a more general point of view, whereas the ⊗-connective expresses a
sort of proto-conjunction, the operator � indicates that a proto-conjunction has
been, so to speak, activated by means of a certain (non-logical) process, e.g.
the pass of a certain lapse of time. Of course, the word ‘activated’ changes
its meaning according to the specific empirical context under focus. It is worth
noting that the need of such a distinction is a logical consequence of the fact that
we are dealing with a controlled monotonicity system. Indeed, in the absence of
the bonding operator, we would be in the uncomfortable situation in which two
sequents like (E⊗F)∅ ` E⊗F and (E⊗F)S ` E⊗F , with S 6= ∅, would be
both provable, being the proof of the first one just the η-expansion of the axiom
and the second one a proper axiom.

Example 11 Let’s consider the concurrent enzyme inhibition phenomenon as it
has been explained in the introduction, i.e., the enzyme E binds with substratum
S provided that the inhibitor I is not present in the environment at the moment
of the reaction. This kind of empirical information can be encoded by means of
the σ -axiom

σi
(E⊗S){[I],...} ` E�S

introducing the control set Si = {[I], . . .}. In order to provide an example of a
CSI deduction, we report below a proof of the sequent ((E⊗S){[I],...},(I)∅)∅ `
(E�S)⊗ I:

ax.
(E)∅ ` E

ax.
(S)∅ ` S

deep-⊗R
(E,S)∅ ` E⊗S

σi
(E⊗S){[I],...} ` E�S

deep-cut
(E,S){[I],...} ` E�S

ax.
(I)∅ ` I

⊗R
((E,S){[I],...},(I)∅)∅ ` (E�S)⊗ I

⊗L
((E⊗S){[I],...},(I)∅)∅ ` (E�S)⊗ I

11
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Let’s notice that (E ⊗ S, I){[I],...} ` (E � S)⊗ I is not a CSI theorem because
any derivation leading to this sequent would be unable to pass the checkpoint
imposed by the control set Si.

3. The σCSI sequent calculus

The σCSI calculus is obtained from CSI by refining the structure of sequents.
While preserving the tree-structure, σCSI multi-level sequents are designed in
a way to encode some new information concerning the very ‘history’ of the
proof in which they occur. The general aim is that to allow for sound ‘deep’
inferences, i.e., inferences involving conclusions achieved in the previous stages
of the proof [11]. In terms of tree-structures, deep inferences allow us to perform
inferences involving the inner nodes of trees, not only the root-formulas.

As we shall see in Section 3, this syntactical refinement allows us to prove
the cut eliminination theorem for σCSI−, the conjunctive subsystem of σCSI.

3.1. Multi-level sequents and sequent calculus

Definition 12 (multi-level sequent, subsequent, proper subsequent) A multi-
level sequent X is a finite rooted tree such that: (i) each leaf node is labelled
with a formula from F , (ii) each of the (inner) other nodes is labelled with
a pair 〈F,S〉, where F ∈F and S is a control set, and (iii) X has at least two
nodes. The set of the (multi-level) subsequents of X is formed by all the subtrees
X1,X2, . . . ,Xn of X which are multi-level sequents.

Definition 13 (premises, conclusions, intermediate conclusions) Given a mul-
ti-level sequent X , its root is the conclusion, its leaves are the premises and the
formulas labeling the inner nodes are called intermediate conclusions.

With X ,Y,Z, . . . and X ,Y ,Z . . . we respectively denote multi-level se-
quents and finite sequences of multi-level sequents. Multi-level sequents are
usually written through nested parentheses. This notation represents as a string
the information concerning the leaves according to the geometrical structure of
the tree. In order to recover the lacking information about inner nodes, right
parentheses are decorated with an expression of the form �F |S, where the sym-
bol “�” replaces and generalizes the ordinary turnstile ` of sequent calculus.

12
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A B

C D

E

hF,Si

hG,Ti

hH,Ui

FIG. 4: An example of multi-level sequent.

Thus, we write (. . .)�F |S to mean that the tree displayed on the left-hand side
of the symbol � has the root-node labelled by 〈F,S〉. Since trees are standardly
considered modulo permutations of the branches emerging from the same node,
any multi-level sequent X can be written as X = (X ,Γ)�C, where all immedi-
ate subsequents are shifted to the left-hand side and single formulas remain on
the right.

Example 14 In Figure 4, the structure of the multi-level sequent

X = (((E)�F |S,C,D)�G|T,A,B)�H|U

is geometrically represented. Notice that X itself, ((E)�F |S,C,D)�G|T and
(E)�F |S are the three subsequents of X .

Definition 15 (tensorial closures) If Γ = F1, . . . ,Fn, then Γ⊗ = F1⊗ . . .⊗Fn.
Analogously, if X = (X1,Γ1)�H1|T1, . . . ,(Xn,Γn)�Hn|Tn, then X⊗=H1⊗
. . .⊗Hn.

Definition 16 (monotonicity soundness) A multi-level sequent X is said to be
monotonically sound if, for each of its subsequents (Y ,∆)�D|T, it is (Y⊗⊗
∆⊗)? ‖ T.

Theorem 17 (monotonicity soundness) Any multi-level sequent X derivable
in σCSI is monotonically sound.

13
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Proof The proof proceeds by induction on the length of σCSI proofs. For
further details the reader can refer to [7].

The down rule ‘⇓’ has a clear intuitive meaning. Its premise describes the
situation where the elements in Y and those in ∆, when glued together, produce
C. Then, C is added to the elements of Γ and those of X so that their combina-
tion eventually leads to D. The ⇓-rule therefore assures that, if the elements in
the compound X⊗⊗Γ⊗⊗Y⊗⊗∆⊗ are compatible with both the control sets S
and T, then D can be delivered directly by putting together, at the same time, the
elements of X and Γ with those belonging to Y and ∆. Geometrically speak-
ing, an application of the ⇓-rule amounts to contract a branch in the specific
tree under consideration.

The rules ⇑(1) and ⇑(2) are introduced by symmetry from the ⇓-rule and
can be regarded as a sort of time-interpolation device. The premise of ⇑(1)
says that the elements delivered by X , Γ, Y and ∆ produce C. Hence the
rule simply guarantees the possibility of inserting a unit-segment of time in
which the elements delivered by Y and those in ∆ just are grouped together
before being added to those of X and Γ in a successive time. The mechanism
underlying the ⇑(2) rule is analogous. From a geometrical point of view, an
application of the ⇑-rules amounts to expand a certain node into a new branch.

Example 18 Our toy example of a controlled monotonicity derivation inspired
by the concurrent enzyme inhibition phenomenon can be framed in σCSI as
follows:

ax.
(E)�E|∅ ax.

(S)�S|∅ ⊗R
((E)�E|∅,(S)�S|∅)�E⊗S|∅

σi
(E⊗S)�E�S|{[I]}

cut
(((E)�E|∅,(S)�S|∅)�E⊗S|∅)�E�S|{[I]} ⇓

((E,(S)�S|∅)�E⊗S|∅)�E�S|{[I]} ⇓
((E,S)�E⊗S|∅)�E�S|{[I]} ax.

(I)� I|∅ ⊗R
(((E,S)�E⊗S|∅)�E�S|{[I]},(I)� I|∅)� (E�S)⊗ I|∅ ⇓

(((E,S)�E⊗S|∅)�E�S|{[I]}, I)� (E�S)⊗ I|∅

The tree expressed by the final multi-level sequent

(((E,S)�E⊗S|∅)�E�S|{[I]}, I)� (E�S)⊗ I|∅
14
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INFERENCE SCHEMATA

Logical axioms: Cut rule:

ax.
(A)�A|∅

(X ,Γ,A)�C|S (Y ,∆)�A|T
cut

(X ,Γ,(Y ,∆)�A|T)�C|S

Structural rules:

(X ,Γ,(Y ,∆)�C|T)�D|S
⇓†

(X ,Γ,Y ,∆)�D|S∪T
(†) provided that (X⊗⊗Γ⊗⊗Y⊗⊗∆⊗)? ‖ S∪T.

(X ,Γ,Y ,∆)�C|S ⇑(1)
(X ,Γ,(Y ,∆)�Y⊗⊗∆⊗|∅)�C|S

(X ,Γ)�C|S ⇑(2)
((X ,Γ)�C|S)�C|∅

Multiplicative conjunction:

(X ,Γ,A,B)�C|S ⊗L
(X ,Γ,A⊗B)�C|S

(X ,Γ)�C|S (Y ,∆)�D|T ⊗R
((X ,Γ)�C|S,(Y ,∆)�D|T)�C⊗D|∅

Arrows:

(X ,Γ)�A|S (Y ,∆,B)�C|T
(L

(Y ,∆,(X ,Γ)�A|S,A ( B)�C|T
(X ,Γ,A)�B|S

(R
(X ,Γ)�A ( B|S\A?

SET OF PROPER AXIOMS

σi
(E⊗F)�E�F |Si

TABLE 2: The σCSI multi-level sequent calculus.

15



M. D’AGOSTINO, M. PIAZZA & G. PULCINI

E S

〈E ⊗ S, ∅〉

〈E " S, {I}〉

〈(E " S)⊗ I, ∅〉

I

FIG. 5: The resource tree involved in Example 18

(cfr. Figure 5) conveys the intuitive meaning of the proof: in order to get the

final compound (E�S)⊗ I one has to make E and S interact and then add, at a
later stage, the inhibitor I.

3.2. Cut-elimination and subformula property for σCSI−

With σCSI− we denote the conjunctive fragment of σCSI, namely the fragment
which is obtained from the rules in Table 2 by removing the arrow rules (L

and (R . The cut-elimination procedure just sketched in this section is limited
to σCSI−. The technical reason for this restriction is that, whereas the structural
rule ⇑(1) introduces the ⊗ connective, there is no structural rule introducing the
arrow (. Because of this asymmetry the cut-elimination procedure designed in
this section does not extend to the whole system σCSI.
Definition 19 (logical cut, proper cut, normal proof) An application of the cut
rule is said to be proper when: (i) it involves a proper axiom and a⊗R-rule, and
(ii) the formula A⊗B introduced by the ⊗R-rule at point (1) is the cut formula.
Any other application of the cut rule is referred to as logical. If a σCSI− proof
π contains no logical application of the cut rule, then π is said to be normal.

According to Definition 19, the general form of a proper cut is the following:

16
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π

...
(X ,Γ)�E|T

δ

...
(Y ,∆)�F |U

((X ,Γ)�E|T,(Y ,∆)�F |U)�E⊗F |∅
σi

(E⊗S)�E�F |Si cut
(((X ,Γ)�E|T,(Y ,∆)�F |U)�E⊗F |∅)�E�F |Si

Theorem 20 (cut-elimination) If σCSI− proves a multi-level sequent X , then
there is a σCSI− proof of X in which all applications of the cut rule, if any, are
proper.

Proof The proof proceeds by showing that parallel reductions reduce the com-
plexity of the cut formula and commutation steps push cut applications upwards
along proofs. The reader can find a detailed proof in [7].

Definition 21 (extended subformula ordering) The relation < is the preorder
on F defined as follows:

• if A is atomic, then A < A;

• if F = A⊗B, then F < A⊗B,A,B;

• if F = A�B, then F < A�B,A⊗B.

Corollary 22 (subformula property) Let Fπ be the set of all the formulas oc-
curring in a σCSI− proof π , and <π the restriction of < to Fπ . If π is a normal
proof and F ∈Fπ is maximal w.r.t. <π , then F occurs in the endsequent of π .

Proof The argument proceeds on the length of the normal proof π . Leaving
aside the cut rule, it is easy to check that any other σCSI− rule preserves the
subformula property. As far as the cut rule is concerned, Theorem 35 guaran-
tees that only proper applications of the cut rule may occur in π . Since proper
applications of the cut rule just replace a formula A⊗B with A�B, by Definition
21 the subformula property turns out to be preserved.
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4. Controlled calculi

4.1. Control sets, compatibility, controlled sequents

CSI and σCSI are both substructural calculi so they are able to express resource
sensitiveness in the sense that a context Γ] [A] is not logically equivalent to the
context, say, Γ] [A,A] displaying the resource A one more time. In resource-
sensitive calculi, the multiplicity of elements matters and this is the reason why
we had to consider contexts as multisets of formulas and control set as sets of
multisets of formulas.

In this section, we review some basic results concerning LKS , a controlled
version of the sequent calculus for classical propositional logic LK introduced
in [14]. As is well known, classical logic is resource-insensitive [10]. For this
reason, it will be more appropriate to view contexts Γ,∆, . . . as sets of formulas
and, accordingly, control sets S,T, . . . as sets of sets of contexts. This is not the
only difference with our previous definition of control set. Actually, control sets
for classical logic no longer need to be restricted to sets of atoms: they just need
to be completed w.r.t. conjunction and disjunction according to the following
definition.

Definition 23 (control set) A control set is a set of sets of logical formulas,
set-theoretically completed under conjunction and disjunction as follows:

• Γ∪{A∧B} ∈ S⇒ Γ∪{A}∪{B} ∈ S,

• Γ∪{A∨B} ∈ S⇒ Γ∪{A} ∈ S and Γ∪{B} ∈ S.

We say that CΓ is the smallest control set S such that Γ ∈ S. If Γ is the empty
context (i.e. Γ =∅), then we pose CΓ =∅.

Remark 24 According to Definition 23, if A ∈ Λ ∈ CΓ, then A is a subformula
of some formula in Γ. This observation implies the finiteness of the control set
CΓ for any context Γ.

Example 25 We give some examples to illustrate Definition 23.

Cp∧(q∨p) = {{p∧ (q∨ p)},{p,q∨ p},{p,q},{p}}

Cp∨q,r∧s = {{p∨q,r∧ s},{p∨q,r,s},{p,r∧ s},{q,r∧ s},{p,r,s},{q,r,s}}
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Cp∨(q∧r) = {{p∨ (q∧ r)},{p},{q∧ r},{q,r}}.

Definition 26 (compatibility) A context Γ is compatible with a control set S,
in symbols Γ ‖ S, if, for all Σ ∈ CΓ and all Λ ∈ S, Λ * Σ.

Example 27 According to Definition 23 and Example 25, we have:

{p∨q,r∧ s} ‖ {{p,q,r,s}}

{p∨q,r∧ s} ∦ {{q,r,s}}

{p∨q,r∧ s} ∦ {{p,r,s}}.

Remark 28 For any context Γ: Γ ‖∅.

The following theorem establishes some basic facts about control sets and
their relative notion of compatibility.

Theorem 29 1. If Γ∪∆ ‖ S and T⊆ S, then ∆ ‖ T.

2. Γ∪{A} ‖ S iff Γ∪{A}∪{A} ‖ S.

3. Γ∪{A∧B} ‖ S iff Γ∪{A}∪{B} ‖ S.

4. Γ∪{A∨B} ‖ S iff Γ∪{A} ‖ S and Γ∪{B} ‖ S.

Proof See [14].

Definition 30 (controlled sequent, soundness) A controlled sequent is a stan-
dard sequent Γ ` ∆ with attached:

• a control set S,

• a context Σ called repository.

Controlled sequents will be expressed as follows:

Σ | Γ `S ∆.

When the repository stores no formula, we will simply omit it and write:

· | Γ `S ∆.

The sequent Σ | Γ `S ∆ is said to be sound in case Σ∪Γ ‖ S.
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Let us now provide an informal account of what control sets and controlled
calculi are meant to be. As we said, control sets are concerns with gathering
all the contexts which are supposed to block a certain derivation. According
to Definition 23, ‘forbidden contexts’ have to be set-theoretically completed
in order to constitute a control set and be thus amenable to a logical treatment.
Completion under conjunction is obvious: if Γ∪{A∧B} represents a ‘forbidden
context’, then Γ∪{A}∪{B} should be considered ‘forbidden’ as well. In other
words, the conjunction operator fails to return an actually new resource from A
and B, but it pairs them, so that the formula A∧B records this pairing operation.
Thus:

{Γ∪{A∧B},Γ∪{A}∪{B}} ⊆ CΓ∪{A∧B}.

The disjunction connective comes with an exclusive meaning. If Γ∪{A∨B}
is on a blacklist of contexts, then it seems quite reasonable to put both Γ∪{A}
and Γ∪{B} on the same blacklist. Thus:

{Γ∪{A∨B},Γ∪{A},Γ∪{B}} ⊆ CΓ∪{A∨B}.

The exclusive feature of disjunction emerges from the observation that the con-
text Γ∪{A}∪{B} does not necessarily appear among the ‘forbidden contexts’.
This absence is unproblematic since any context containing {Γ,A,B} will be
blocked as it contains both the subsets {Γ,A} and {Γ,B}. Anyway, the effect
of dealing with an inclusive disjunction can be easily recovered by taking the
union of the two control sets induced by Γ∪{A∧B} and Γ∪{A∨B}. In this
way, we get:

{Γ∪{A}∪{B},Γ∪{A},Γ∪{B}} ⊆ CΓ∪{A∨B}∪CΓ∪{A∧B}.

Roughly speaking, a system of control sets consists in a set of functions that
assign to each atomic axiom a control set and dictate how control sets have to
be transmitted throughout inference steps. In other words, S grows out of the
assignment of a control set S (p) to each atom of p, so that the corresponding
axiom is:

ax.· | p `S (p) p
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Notice that uniquely atomic axioms, i.e., axioms introducing atomic proposi-
tions, are authorized. Moreover, the general task of S is to indicate how to
combine and transform control sets and repositories along derivations. Let L
be a logic in a two-sided sequent calculus formulation.

The essential idea is that each single application of the rules of L along
derivations has to preserve, besides validity, the soundness of the proved se-
quent. As an example, let us consider the following controlled version of the
standard weakening rule:

Σ | Γ `S A
weak `.

Σ | Γ,B `S A

When considered in a classical framework, this rule is clearly sound. However,
this does not enable us to draw the conclusion Σ | Γ,B `S A from the premise
Σ | Γ `S A: the compatibility between the wider context Σ∪ Γ∪ {B} and the
control set S needs to be verified.

Although our present focus is on classical logic, it is worthy noting that a
system of control sets S can be associated with any two-sided sequent calculus.
A general characterization of the notion of system of control sets can be found
in [14].

4.2. The controlled calculus LKS

The system LKS is obtained by imposing to the Gentzen sequent system for
classical logic what we called in [14] a minimal system of control sets. The way
in which the system S transmits control sets and repositories along derivations
is described in Table 1. In a nutshell:

1. in all unary inference rules, S transmits the same control set from the up-
per controlled sequent to the lower one with the exception of the structural
rule σ (which arbitrarily ‘expands’ the control set);

2. in binary rules, S attaches to the lower sequent the union of the control
sets assigned to the upper sequents.

Furthermore, concerning atomic axioms, we require that:

1. For all atoms p, p /∈ ⋃
S (p) (where S (p) is the control set attached by

S to the axiom introducing the atomic letter p).
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2. The attached repository is always the empty context.

The rationale for the first condition will clearly emerge later (cf. Remark 33).

Definition 31 (proof, paraproof) Consider a rooted, finitely branching tree π

whose nodes are sequents of LKS , and such that it is recursively built up from
axioms by means of the rules of LKS . If each sequent in π is sound, π is said
to be a proof of LKS , otherwise π is called a paraproof.

Previous definition places upon a proof π of LKS two independent require-
ments. The first, logical validity, standardly establishes that each one of the
deductive steps performed in π has to be accomplished in accordance with the
rules of LKS . The second requirement, soundness, tells that each single ap-
plication of the rules in π must be soundness preserving so that each sequent
occurring in π is sound with respect to the control set attached to it. The fulfil-
ment of the latter condition is what turns a paraproof into a LKS proof.

Example 32 Let S be such that {p} ∈S (q). Inasmuch as the sequent

q | p, p→ q `S∪{{p},...} q

is unsound, the following derivation constitutes a paraproof.

ax.· | p `S (p) p
ax.· | q `{{p},...} q
→`q | p, p→ q `S (p)∪{{p},...} q
`→p,q | p→ q `S (p)∪{{p},...} p→ q

Remark 33 The previous example shows that equalities (i.e. the provable equiv-
alence of any formula with itself) are not necessarily guaranteed in controlled
calculi. With a little ingenuity, however, we can at least preserve equalities in-
volving atoms by additionally requiring that, for any atom p, p /∈⋃

S (p).

4.3. Cut-elimination and subformula property

Lemma 34 Any cut-free paraproof in LKS is a proof if and only if its endse-
quent is sound.
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Axiom:

ax.· | p `S (p) p with p atomic

Cut rule:

Σ | Γ `S A,∆ Σ′ | Γ′,A `T ∆′
cut

Σ,Σ′ | Γ,Γ′ `S∪T ∆,∆′

Structural rules:

Σ | Γ `S ∆
σ

Σ | Γ `S∪T ∆

Σ | Γ `S ∆
ρ

Σ,A | Γ `S ∆

Logical rules:

Σ | Γ,A,B `S ∆
∧ `

Σ | Γ,A∧B `S ∆

Σ | Γ `S ∆,A Σ′ | Γ′ `T ∆′,B
` ∧

Σ,Σ′ | Γ,Γ′ `S∪T ∆,∆′,A∧B

Σ | Γ,A `S ∆ Σ′ | Γ′,B `T ∆′
∨ `

Σ,Σ′ | Γ,Γ′,A∨B `S∪T ∆,∆′
Σ | Γ `S ∆,A,B

` ∨
Σ | Γ `S ∆,A∨B

Σ | Γ `S A,∆ Σ′ | Γ′,B `T ∆′
→`

Σ,Σ′,B | Γ,Γ′,A→ B `S∪T ∆,∆′
Σ | Γ,A `S B,∆

`→
Σ,A | Γ `S A→ B,∆

Σ | Γ `S A,∆
¬ `

Σ | Γ,¬A `S ∆

Σ | Γ,A `S ∆
` ¬

Σ,A | Γ `S ¬A,∆

TABLE 3: The controlled sequent calculus LKS
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Proof Let r be any LKS rule, except the cut rule. Consider the following
configuration:

Σ | Γ `S ∆ . . .
r

Σ′ | Γ′ `S′ ∆′

where Σ | Γ `S ∆ is either the only premise of r, or one (not necessarily the first)
of the two premises. It suffices to remark that, for each r, {Σ,Γ} ⊆ {Σ′,Γ′}
and S⊆ S′. By Theorem 29(1), we get the soundness of the premise Σ | Γ `S ∆

from that of the conclusion Σ′ | Γ′ `S′ ∆′. In the case of left-contraction, left-
conjuction and left-disjunction, combine Theorem 29(1) with Theorems 29(2),
(3) and (4), respectively.

Theorem 35 (Cut-elimination). Any provable LKS sequent has a cut-free proof.

Proof The tricky point about cut-elimination in controlled calculi is that re-
ductions steps do not necessarily preserve the soundness of sequents, that is, the
normalization procedure may turn proofs into paraproofs. The key point here
is that normal forms of a LKS proof is always a proof, though the intermedi-
ate proofs in the reduction chain might not be sound. In particular, the proof
consists in the following two steps.

1. We show, at first, how the standard cut-elimination algorithm for LK can
be tailored for controlled calculi. More details can be found in [14].

2. Second, we show that the normal derivation π ′, obtained from a LKS

proof π by means of the cut-elimination algorithm outlined [14], is indeed
a proof, namely each one of its sequents is sound. By hypothesis, π is a
proof, so its endsequent is sound. By Lemma 34, π ′ is a proof as well.

Corollary 36 (Subformula Property). If a sequent is provable in LKS , then it
is provable analytically, namely by means of a derivation in which all formulas
are subformulas of those occurring in the end sequent.

Proof As usual, by induction on the length of cut-free proofs.
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5. Conclusions

The results surveyed in this paper have to be framed within an ongoing research
programme whose overall aim is to investigate the extent to which it is possible
to accommodate distinctive features of classical and non-classical — especially
non-monotonic — logics within a disciplined proof-theoretical framework. In
some respects, one may regard our perspective — especially general controlled
systems as they have been proposed in Section 4 — as similar in spirit to that of
Makinson, who is concerned with ‘bridging the gap’ between classical and non-
monotonic logic by means of a logical ‘continuous’ [12]. However, Makinson’s
work is essentially semantical, being focused on the notion of consequence re-
lation. Here, we propose instead some general ways of decorating sequents and
proofs of well-known logical systems (including substructural calculi [6, 5]) so
as to control the monotonicity of their consequence relation depending on the
context.

Many intriguing questions about controlled calculi and their logical nature
are still open. Let us mention just one of the most abstract and interesting.
Being defined as a set of sets (or multisets if the calculus to be controlled is
resource-sensitive), the notion of control set appears to involve a sort of higher
order conceptualization in disguise. For this reason, it would be interesting to
evaluate the possibility of reproducing the control set device by resorting to
second-order calculi, so as to avoid the ‘external’ decorations of sequents. This
would put us in the position to raise the question of whether the natural logical
level for dealing with controlled monotonicity is the second-order one.
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