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The problem of a system of many particles in the quantum regime is made fairly hard by the
need of working with the many-body wavefunction  (r1, r2, ..., rN), that even for spinless particles
has 3N variables (for N particles in 3 dimension)! This is a formidable task, even for systems of
a few particles, and thus the search of schemes where one can work with objects simpler than the
many-body wavefunction has had a special appeal since the birth of quantum mechanics. One
such a scheme is provided by the so called Density Functional Formalism (DFF) , whereby one
focusses on the one-body density ⇢(r) rather than on  , as it is done in the Schrodinger equation.
The prototype of the modern Density Functional Theory (DFT) is the scheme devised by Thomas
and Fermi in the early days of quantum mechanics.

In a DFF one writes the ground-state energy E of the system of interest as a functional of
⇢(r), E[⇢], with the limited objective of calculating just E and ⇢(r) in the ground state. People
often try to get additional information, but it should be kept in mind that such an information is
usually beyond the reach of DFF, at the exact level. Below we shall outline some basic aspects of
the Hohenberg-Kohn-Sham (HKS) DFT starting, historically, from a set of two theorems due to
Hohenberg and Kohn.

HKS DFT is the base of modern DFF, and is used in the majority of electronic structure
calculations of materials of technological, chemical, biological interest, by a community that keeps
growing day after day.

1 Hohenberg-Kohn Theorems

1.1 The first theorem

Let us consider a system of N identical particles with mass m, interparticle interaction U(r1, r2, ..., rN),
in an external potential v(r) . The Hamiltonian describing the system will then be:

H = T + U + V, (1)

with
T = �

X

i

~2r2
i

2m
(2)

and
V =

X

i

v(ri). (3)

As an example we may consider the familiar point particles with charge e, in which case U =
(1/2)

P
i 6=j e

2/|ri � rj|; however, we stress that in most of the following we do not need to specify
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the form of U , which may contain contribution of all order (two-body, three-body, ...). Similarly
we note that for the time being we do not need specify whether the identical particles are Fermions
or Bosons.

Here, we shall assume that N and U(r1, r2, ..., rN) are fixed, while the external potential can
be chosen within a suitable class of functions. Two external potentials v and v0 will be considered
different if

v(r)� v0(r) 6= cost (4)

It is evident that the external potential v fixes the Hamiltonian and in turn its ground state |Gi,
which in all of the following will be assumed non degenerate,

v(r)! H ! |Gi, (5)

as well as the ground state energy
EG = hG|H|Gi (6)

and the ground state one-body density

⇢(r) = hG|⇢̂(r)|Gi. (7)

We note that different potentials v and v0 (4) yield different ground states |Gi 6= |G0i. Indeed,
assuming per absurdum that different potential yield the same ground state, one is immediately lead
to the conclusion that (apart on a set of negligible measure, the nodal surface of the wavefunction)
v and v0 are the same (i.e., they differ at most by a constant), which contradicts the hypothesis.

It is clear that Eqs. 4-7 establish a functional application from the space of external potentials
to that of ground state densities! In other words a choice for v(r) fixes the ground state density
function ⇢(r):

v ! ⇢. (8)

Note the absence of the spatial argument in the equation above: it is to emphasize the functional

correspondence, which means that the value of ⇢(r) at a given point r depends on the value taken

by the function v(r) at all points in its domain.

We recall that the one-body density operator is defined as

⇢̂(r) =
X

i=1,N

�(r� ri), (9)

so that

⇢(r) = hG|
X

i,=1,N

�(r� ri)|Gi

= N

ˆ
dr2

ˆ
dr3 · · ·

ˆ
drN|�G(r, r2, r3, · · · ,rN), (10)

where we have used the symmetry of the wavefunction under interchange of the coordinates of
two particles and the fact that integration variables are dummy ones and can be freely relabelled.
Note that
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V =
X

i

v(ri) =

ˆ
dr v(r)⇢̂(r), (11)

hG|V |Gi =

ˆ
dr v(r)⇢(r). (12)

Having established the correspondence v ! ⇢ we now want to demonstrate that this corre-
spondence can be in fact inverted, so that v  ! ⇢. In other words, we want to show that given a
one-body density ⇢(r) there exists one and only one potential v(r) that produces ⇢(r) as ground
state density of the Hamiltonian 1. We shall proceed by reductio to absurdum. Let us assume
that indeed two different (see Eq.4) potentials exist, v and v0, which yield the same ground state
density: (

v ! ⇢

v0 ! ⇢
. (13)

They will, however (see above) yield different ground states |Gi 6= |G0i, with energies E an E 0,
respectively. The minimum principle then implies

E 0 = h|G0|H 0|G0i < h|G|H 0|Gi = h|G|H + V 0 � V |Gi = E +

ˆ
dr⇢(r)[v0(r)� v(r)] (14)

and

E = h|G|H|Gi < h|G0|H|G0i = h|G0|H 0 + V � V 0|G0i = E 0 +

ˆ
dr⇢(r)[v(r)� v0(r)]. (15)

Summing Eqs. 14 and 15 one gets
E + E 0 < E + E 0,

which is manifestly absurdum. Therefore there cannot exist two different external potential v
and v0 yielding the same one-body density ⇢ and v  ! ⇢. This completes the proof of the first
Hohenberg-Kohn theorem.

It is evident that from the invertibility v  ! ⇢ it follows in particular

⇢ 7�! v, (16)

which establishes a functional application from the one-body density ⇢(r) into the external poten-
tial, and therefore into the Hamiltonian, the ground state and ground state averages such as the
internal energy–to mention a few notable quantities!

1.2 The second theorem

It is clear that fixing a density ⇢0(r) fixes a unique external potential v0(r), which in turn fixes the
ground-state|G0i and the internal energy

⇢0(r) 7�! EI [⇢
0] = hG0|T + U |G0i. (17)

Evidently, ⇢0(r) also fixes another quantity EG[⇢0]

⇢0(r) 7�! EG[⇢
0] = EI [⇢

0] +

ˆ
dr⇢0(r)v(r), (18)
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a functional of the one-body density that, for fixed v(r), may be shown to be minimum at the
(ground-state) one-body density ⇢(r) ⌘ ⇢G(r), providing at such one-body density the ground-
state energy. Indeed, let ⇢0(r) 6= ⇢G(r); then ⇢0 7�! v0 7�! |G0i and, since necessarily v0 6= v, it
follows |G0i 6= |Gi; then

EG[⇢
0] = EI [⇢

0] +

ˆ
dr⇢0(r)v(r) = hG0|T + U + V |G0i = hG0|H|G0i (19)

> hG|H|Gi = hG|T + U + V |Gi = EI [⇢] +

ˆ
dr⇢(r)v(r) = EG[⇢]

or in brief

EG[⇢
0] > EG[⇢], ⇢0(r) 6= ⇢(r). (20)

Clearly, if one knows the density functional EG[⇢], solving the associated minimum problem delivers
the ground state one-body density (i.e. that non negative function that minimizes the functional)
and the ground-state energy ( i.e. the value of the functional at the minimum). It will be clear to
the reader that a necessary condition for EG[⇢] (in brief E[⇢] ) to be minimum is

�E

�⇢(r)
= µ, (21)

2 The density functional for non-interacting particles
The first surprise, once one has accepted the fact that the ground-state energy can be regarded as
a functional of the one-body density ( from now on simple the density), is that such a functional
is non explicitly known even in the simple case of independent (or non-interacting) particles. In
such a case in fact one is lead to consider the one-particle problem


�~2r2

2m
+ v(r)

�
�↵(r) = ✏↵�↵(r), (22)

whose solutions provide the density

⇢(r) =
X

↵,occ.

|�↵(r)|2 , (23)

where the sum runs over the occupied states, namely for N particles the N orbitals with the lowest
energy eigenvalues. According to the results above the energy functional is readily calculated. In
fact the kinetic energy functional is

T [⇢] =
X

↵,occ.

h�↵|�
~2r2

2m
|�↵i2 ⌘ T0[⇢], (24)

which yields the energy functional as

E[⇢] = T0[⇢] +

ˆ
dr⇢(r)v(r). (25)

The minimum condition will then read
�E

�⇢(r)
=

�T0

�⇢(r)
+ v(r) = µ (26)

In other words, we know how to calculate the energy functional from the one-particle orbitals of
the independent-particle problem in an external field, but we do not know the functional in closed
form! Given this, we may hope at most to have a similar situation in the interacting-particle case.
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2.1 The Konh-Sham scheme (formalism)

Our aim here is to demonstrate that the density functional problem of interacting particles can
be cast into a selfconsistent problem of independent (i.e., non-interacting particles). Let’s indicate
with {⇢(r)}U the set of ground state densities for the interacting system when the external potential
v(r) is varied, i.e. is chosen within a specified set of functions. We shall call the functions in the
set {⇢(r)}U the v-representable interacting density. In principle one may think that the set of
densities corresponding to different interparticle interactions, i.e. different choices for U , would be
different. However we shall assume, with Kohn and Sham that

{⇢(r)}U ⇢ {⇢(r)}U=0 ⌘ {⇢(r)}0. (27)

This amounts to say that any interacting one-body density is also solution of the non-interacting
problem. In general we expect the external potential for the non-interacting case to be different
from the one in the interacting situation. If Eq. (27) holds, then for any interacting density ⇢(r)
there will be a suitable external potential ṽ(r) that delivers ⇢(r) as solution of the on-interacting
problem, so that one may construct T0[⇢], from which an excess functional can be obtained by
subtraction as

Eex[⇢] = EI [⇢]� T0[⇢]. (28)

In fact for system of Coulomb particles (i.e. e2/r interaction) it is customarily to define an
exchange-correlation (xc) functional by subtracting from the internal energy also the Hartree en-
ergy:

Exc[⇢] = EI [⇢]� T0[⇢]� UH [⇢]. (29)

Whence it follows that the ground state functional can be written as

EG[⇢] = T0[⇢] + UH [⇢] + Exc[⇢] +

ˆ
dr⇢(r)v(r). (30)

It follows that the minimum condition for the interacting system may be written as:

�E

�⇢(r)
=

�T0

�⇢(r)
+ vH(r) + vxc(r) + v(r) =

�T0

�⇢(r)
+ ṽ(r) = µ, (31)

where clearly the effective (density-dependent non-interacting potential) ṽ([⇢]; r) is the sum of the
external potential v(r) for the interacting system, the Hartree potential vH([⇢]; r) and the so-called
exchange potential vxc([⇢]; r): the last two terms are functionals of the density, in addition to being
functions of r,

vxc([⇢]; r) =
�Exc

�⇢(r)
, (32)

vH([⇢]; r) =
�UH

�⇢(r)
= e2

ˆ
dr0

⇢(r0)
|r� r0| . (33)

Eqs. (31,26) show that indeed the interacting problem can be solved as a non-interacting one in
an effective density-dependet external potential. This suggests to solve the so-called Kohn-Sham
equations 

�~2r2

2m
+ ṽ(r)

�
�↵(r) = ✏↵�↵(r). (34)
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From these one selfconsistently obtains the density as

⇢(r) =
X

↵,occ.

|�↵(r)|2 , (35)

as it is done in Hartree or Hartree-Fock (HF) equations. In other words one starts from a guess
density ⇢(r) and iterates Eqs. (3435) up to selfconsistency (i.e. when ⇢(r) obtained from Eq. (35)
is not appreciably different from the one used to construct the effective potential in Eq. (34). As
is the case with HF, at selfconsistency the eigenvalue sum differs form the ground state energy and
in the present case it is straightforward to show that

E[⇢] =
X

↵,occ.

✏↵ � UH [⇢]�
ˆ

dr⇢(r)vxc([⇢]; r) + Uxc[⇢]. (36)

-
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