Condensed Matter Physics II - Second intermediate exam

A.A. 2012-2013, June 212013

(time 3 hours)
Solve the following two exercises, each has a maximum score of 18 for a total of 36. A score between 33 e 36 corresponds to 30 cum laude, between 30 e 32 is renormalized to 30 (the maximum official score, without laude).

NOTE:

- Give all details which help in understanding the proposed solution. Answers which only contain the final result or not enough detail will be judged insufficient and discarded;
- If you are requested to give evaluation/estimates, do so using 3 significant figures.

Exercise 1 Phonons in a linear chain with next-neighbour springs.
Consider a lineae chain of atoms with mass M ands equilibrium spacing a. Each atom is coupled to the nearest neighbours by springs with elastic constant K_{1} ed to the next neighnbours by springs with elastic constants K_{2}.

1. Write down the potential energy of the chain in terms of the deviation $u(n)$ of the atoms from the equilibrium position.
2. Obtain the equation of motion of the n-th atom.
3. Prove that $u(n)=\epsilon \exp [i(q n a-\omega(q)) t]$ is solution of the equation of motion and obtain $\omega^{2}(q)$
4. Demonstrate that for $q \rightarrow 0 \omega(q) \simeq c q$ and give the expression of c in terms of the physical parameters characterizing the problem.
5. Consider now (and only now!) $K_{2}=K_{1} / 2$ and demonstrate that for $0<q \leq \pi / a$ $\omega^{2}(q)>0$.
6. Demonstrate that $d \omega(q) / d q$ vanishes at a wavevector $0<q<\pi / a$ and provide its value. Provide a qualitative sketch of $\omega(q), \quad 0 \leq q \leq \pi / a$.
[You may use the results found in answering point 5) and $d \omega^{2}(q) / d q=2 \omega(q) \times$ $d \omega(q) / d q$ to look for the zero of $d \omega^{2}(q) / d q$.]
In case you need it: $\cos (x)=-1 / 2$ at $x=2 \pi / 3$ and $x=4 \pi / 3$
The questions have the following partial marks: per 2,2,4,2,3,5.

Exercise 2: Superconductors

Consider a metal that at kow temperature has a specific heat $c_{v}=\gamma T$, with $\gamma=$ $4.410^{-4} \mathrm{cal}-$ mole $^{-1} \mathrm{~K}^{-2}$ and a Debye temperature $\Theta=170 \mathrm{~K}$. We also know that the metal becomes superconductor at $T=3.72 \mathrm{~K}$. In the following assume a BCS superconductor,

1. Evaluate the electronic density of states per unit volume in $\left(\mathrm{cm}^{-3} \mathrm{eV}^{-1}\right)$.
2. Evaluate ω_{D} in s^{-1}.
3. What's the value of V_{0}, the average attraction between electrons, in eV ?
4. What's the value of the zero temperature gap, in eV ?
5. Knowing that the effective electron mass in units of m_{e} is 1.32 , evaluate the electron density in cm^{-1}.
6. Evaluate the correlation length in the superconducting phase a $T=0$.
