Condensed Matter Physics II. - A.A. 2010-2011, February 24, 2012

(time 3 hours)
Solve the following two exercises, each has a maximum score of 18 for a total of 36. A score between 33 e 36 corresponds to 30 cum laude, between 30 e 32 is renormalized to 30 (the maximum official score, without laude).

NOTE:

- Give all details which help in understanding the proposed solution. Answers which only contain the final result or not enough detail will be judged insufficient and discarded;
- If you are requested to give evaluation/estimates, do so using 3 significant figures.

Exercise 1: Nearest-neighbors phonons

Consider the atoms on a Bravais lattice and small deviations $\mathbf{u}(\mathbf{R})$ from the equilibrium positions \mathbf{R}. In the nearest-neighbors approximation the potential energy is approximated by

$$
U=\frac{K}{4 \mathrm{~d}^{2}} \sum_{\mathbf{R}} \sum_{\mathbf{d}}\left[\left(\mathbf{u}_{\mathbf{R}+\mathbf{d}}-\mathbf{u}_{\mathbf{R}}\right) \cdot \mathbf{d}\right]^{2},
$$

where the second sum (over \mathbf{d}) runs over the nearest neighbors of the lattice site \mathbf{R}.

1. Calculate

$$
\frac{\partial U}{\partial u_{\alpha, \mathbf{R}^{\prime}}},
$$

where $u_{\alpha, \mathbf{R}^{\prime}}$ is the cartesian α-component of $\mathbf{u}_{\mathbf{R}^{\prime}}$.
2. Using the previous result calculate

$$
D_{\alpha, \beta}\left(\mathbf{R}^{\prime}-\mathbf{R}^{\prime \prime}\right)=\frac{\partial^{2} U}{\partial u_{\beta, \mathbf{R}^{\prime \prime}} \partial u_{\alpha, \mathbf{R}^{\prime}}}
$$

3. Specialize to a two-dimensional square lattice with lattice spacing a and calculate explicitly the four elements of $D_{\alpha, \beta}\left(\mathbf{R}^{\prime}-\mathbf{R}^{\prime \prime}\right)$.
4. Calculate now the so-called dynamical matrix

$$
D_{\alpha, \beta}(\mathbf{q})=\sum_{\mathbf{R}^{\prime \prime}} D_{\alpha, \beta}\left(\mathbf{R}^{\prime}-\mathbf{R}^{\prime \prime}\right) e^{-i \mathbf{q} \cdot\left(\mathbf{R}^{\prime}-\mathbf{R}^{\prime \prime}\right)}
$$

5. Obtain the eigenvalues and eigenvectors (polarization vectors) of the above matrix.
6. Calculate the phonon density of states,

$$
g(\omega)=\sum_{i=1,2}\left[\frac{1}{A} \sum_{\mathbf{q} \in F B Z} \delta\left(\omega-\omega_{i}(\mathbf{q})\right)\right],
$$

as function of ω specifying the admissable values for ω; here $\omega_{i}(\mathbf{q}), i=1,2$, are the two phonon branches found from the eigenvalues of the dynamical matrix.

Esercizio 2 Pauli susceptibility in 3D at $T \neq 0$

Consider a non interacting electron gas in 3 dimensions, in a uniform magnetic field $\mathbf{H}=H \hat{z}$. The energy levels of the $\sigma= \pm$ (i.e., up or down) spin electrons are $e_{\sigma}(\mathbf{k}, H)=\hbar^{2} k^{2} /(2 m)+\sigma \mu_{B} H$. We shall denote with n the number density and V the volume of the sample.

1. Knowing that total density of states at $H=0$,

$$
g_{0}(E)=\frac{2}{V} \sum_{\mathbf{k}} \delta\left(E-\frac{\hbar^{2} k^{2}}{2 m}\right)=\frac{3}{2} \frac{n}{E_{F}} \sqrt{\frac{E}{E_{F}}} \theta(E)
$$

express

$$
g_{\sigma}(E, H)=\frac{1}{V} \sum_{\mathbf{k}} \delta\left(E-e_{\sigma}(\mathbf{k})\right)
$$

in terms of $g_{0}(E)$. Here, $\theta(x)$ is the Heaviside step function.
2. Demonstrate that the density of σ electrons at givel T, H, μ

$$
n_{\sigma}(T, H, \mu)=\int d E \frac{g_{\sigma}(E, H)}{\exp [\beta(E-\mu)]+1},
$$

can be expressed in terms of that at $H=0$ at a shifted chemical potential $\tilde{\mu}=\mu-\sigma \mu_{B} H$, i.e.,

$$
n_{\sigma}(T, H, \mu)=n_{\sigma}(T, 0, \tilde{\mu})=\int_{0}^{\infty} d E \frac{g_{0}(E) / 2}{\exp [\beta(E-\tilde{\mu})]+1} .
$$

This is easily shown by considering a change ov variable in the integral.
3. Assume $T \ll T_{F}$ and use Sommerfeld expansion (see below) to calculate $n_{\sigma}(T, H, \mu)$.
4. Use the result above to calculate $M(T, H, \mu)=-\mu_{B}\left(n_{+}-n_{-}\right)$.
5. Assuming that $\mu(T, H)=\mu_{0}(T)+\alpha H^{2}, \quad H \rightarrow 0$, expand M to linear order in H.
6. Evaluate the spin susceptibilty

$$
\chi_{S}=\left.\frac{\partial M}{\partial H}\right|_{H=0}
$$

and rewrite it to display the fractional change of χ_{S} due to the small but finite temperature.

Note: Sommerfeld expansion, valid for $f(E)$ a smooth function, slow with respect to the exponential and $\exp \beta \mu \gg 1$, is

$$
\int_{0}^{\infty} d E \frac{f(E)}{\exp [\beta(E-\mu)]+1}=\int_{0}^{\mu} d E f(E)+\frac{\pi^{2}}{6}\left(K_{B} T\right)^{2} f^{\prime}(\mu)+\ldots
$$

