Condensed Matter Physics II. - A.A. 2018-2019, June 14, 2019

(time 3 hours)
Solve the following two exercises, each has a maximum score of 18 for a total of 36. A score between 33 e 36 corresponds to 30 cum laude, between 30 e 32 is renormalized to 30 (the maximum official score, without laude).

NOTA BENE:

- Give all details which help in understanding the proposed solution. Answers which only contain the final result or not enough detail will be judged insufficient and discarded;
- If you are requested to give evaluation/estimates, do so using 3 significant figures.

Exercise 1: One-dimensional linear chain with interactions beyond the nearest neighbours.

Considerino the oscillations of a linear atomic chain, with interatomic distance a and mass M, when interactions beyond the nearest neighbours are present.

1. Write the potential energy of the chain with $u(n)$ the displacement from equilibrium position $n a$ of the n-th atom and $K_{m}=K e^{-\mu|m|}$ the force constant of order m, $|m| \geq 1$.
2. Obtain the force acting on the l-th atom.
3. Obtain the condition under which a solution of the type $e^{i(q a l-\omega t)}$ satisfies the equations of motions, i.e., obtain the dispersion relation for the squared frequency, $\omega(q)^{2}$.
4. Evaluate the infinite sum in $\omega(q)^{2}$, to obtain a explicit function of $e^{-\mu}$ and $[\sin (q a / 2)]^{2}$. You'll need to recall the formula for the sum of the geometric series.
5. Calculate the velocity of sound.
6. Provide a qualitative graphical comparison between the $\omega(q)$ found above for $e^{-\mu}=1 / 2$ and that of a harmonic linear chain with only nearest neighbors springs of elastic constant K, i.e., with frequency $\omega_{1}(q)=2 \sqrt{K / M} \sin |q a / 2|$. Exploit the values of the sound velocity and the values of the frequencies at $q=\pi / a$ in the two cases and answer (with detailed motivation) the question: is $\omega(q)^{2}$ a monotonic function for $0<q<\pi / a$?

Exercise 2: BCS superconductor.

Consider a metal which in the normal state has a specific heat at low temperature $c_{v}=\gamma T$, with $\gamma=1.85 \times 10^{3} \cdot \mathrm{erg} \cdot \mathrm{cm}^{-3} \cdot \mathrm{~K}^{-2}$ and a Debye temperature $\Theta=275 \mathrm{~K}$. The metal becomes superconductor at $T_{c}=9.26 \mathrm{~K}$ and the mass of the conductions electrons obeys: $m_{c} / m_{e}=12$.

1. Calculate the electronic (energy) density of states at the Fermi energy (in $\mathrm{cm}^{-3} \mathrm{eV}^{-1}$). Use eq. 2.80 of the textbook.
2. What is the value of ω_{D} (the Debye frequency)?
3. What is the value of V_{0} (in BCS theory) in eV ; V_{0} being the average attraction appearing in eq. 34.16 of the textbook?
4. Obtain the superconductor energy gap Δ in eV at $T=0$?
5. Keeping in mind that the conduction electrons have an effective mass, obtain the value of the correlation length ξ_{0} in the superconducting phase at $T=0$.
6. Estimate London's Λ (in \AA)
