(time 3 hours)
Solve the following two exercises, each has a maximum score of 18 for a total of 36 . A score between 33 e 36 corresponds to 30 cum laude, between 30 e 32 is renormalized to 30 (the maximum official score, without laude).

NOTE:

- Give all details which help in understanding the proposed solution. Answers which only contain the final result or not enough detail will be judged insufficient and discarded;
- If you are requested to give evaluation/estimates, do so using 3 significant figures.

Exercise 1: Excitation in a linear Debye chain.

Consider the harmonic vibrations (phonons) in an infinite linear chain of equispaced atoms, with lattice parameter a, and springs of constant G connecting each atom to its nearest neighbors.

1. Let $u_{+}(q, n, t)=\epsilon \exp [i(q n a-\omega(q) t)]$ and $u_{-}(q, n, t)=u_{+}^{*}(q, n, t)$ be the 2 N independent solutions (normal modes) of the dynamical problem, with q, n, t respectively a wavevector in the FBZ, a lattice position and time. We have in mind a chain of length $L=N a$, with PBC. Let's resort to Debye approximation and replace $\omega(q)$ with the linear behavior valid for $|q| \ll \pi / a$. Give explicitely $\omega(q)$ in such approximation for both positive and negative values of q.
2. Let's consider a superposition of the normal modes with coefficients

$$
a_{-}(q)=a_{+}(q)=\frac{l a}{5 L} \frac{1}{1+(q l)^{2}}
$$

and (i) $l \gg a / \pi$. Calculate

$$
u(n, t)=\sum_{\sigma= \pm, q} a_{\sigma}(q) u_{\sigma}(q, n, t) .
$$

We remark that due to the condition (i) above, the integral over q can be approximated extending it to all q-space, i.e., over the q-range $[-\infty, \infty]$.
3. Are there atoms displaced from the equilibrium positions at $t=0$.
4. Calculate the speed of each atom at $t=0$.
5. Which atoms are displaced from equilibrium at $t=m a / c$, with $m a \gg l$ and c the sound velocity: please, answer by giving also a qualitative sketch of the displacements along the chain!
6. Give a qualitative sketch of the velocity of the atoms along the chain, at $t=m a / c$, with $m a \gg l$ and c the sound velocity: please provide a detailed motivation of the sketch.

Note:

$$
\int_{0}^{\infty} d q \frac{\cos [q s]}{1+(q l)^{2}}=\frac{\pi}{2 l} e^{-|s| / l}
$$

Esercizio 2 Pauli susceptibility in $2 D$ at $T \neq 0$

Consider a non interacting electron gas in 2 dimensions, in a uniform magnetic field $\mathbf{H}=H \hat{z}$. The energy levels of the $\sigma= \pm$ (i.e., up or down) spin electrons are $e_{\sigma}(\mathbf{k})=\hbar^{2} k^{2} /(2 m)+\sigma \mu_{B} H$. We shall denote with n the areal number density and A the area of the sample.

1. Knowing that total density of states at $H=0$,

$$
g_{0}(E)=\frac{2}{A} \sum_{\mathbf{k}} \delta\left(E-\frac{\hbar^{2} k^{2}}{2 m}\right)=\frac{n}{\epsilon_{F}} \theta(E),
$$

express

$$
g_{\sigma}(E)=\frac{1}{A} \sum_{\mathbf{k}} \delta\left(E-e_{\sigma}(\mathbf{k})\right)
$$

in terms of $g_{0}(E)=\left(n / \epsilon_{F}\right) \theta(E)$. Here, $\theta(x)$ is the Heaviside step function.
2. Assuming that the chemical potential μ is given calculate the density of σ electrons at givel T, H, μ from the relation

$$
n_{\sigma}=\int d E \frac{g_{\sigma}(E)}{\exp [\beta(E-\mu)]+1},
$$

where the range of the energy integration is determined by the range of the density of states $g_{\sigma}(E)$.
3. Using the result found above, calculate the magnetization density $M(T, H, \mu)=-\mu_{B}\left(n_{+}-n_{-}\right)$.
4. Imposing the constraint $n_{+}(T, H, \mu)+n_{-}(T, H, \mu)=n$ show that $\mu(T, H)=\mu(T,-H)$, i.e., μ is an even function of H.
5. Assuming that $\mu(T, H)=\mu_{0}(T)+\alpha H^{2}, \quad H \rightarrow 0$, expand M to linear order in H as $M(T, H, \mu)=M\left(T, \mu_{0}\right)+\chi\left(T, \mu_{0}\right) H$, obtaining the explicit expression of $\chi\left(T, \mu_{0}\right)$.
6. Knowing that $\mu_{0}=\epsilon_{F}+K_{B} T \log \left[1-\exp \left(-\beta \epsilon_{F}\right)\right]$, express $\chi\left(T, \mu_{0}\right)$ in terms of n, ϵ_{F}, β. This expression is valid at arbitrary temperature.

Note: $\int d x[(\exp (x)+1)]^{-1}=-\log [(1+\exp (-x)]$.

