
```
Condensed Matter Physics II. - A.A. 2014-2015, June 11 2015
```

(time 3 hours)

Solve the following two exercises: (i) Give all details which help in understanding the proposed solution. Answers which only contain the final result or not enough detail will be judged insufficient and discarded; (ii) if you are requested to give evaluation/estimates, do so using 3 significant figures.

## Exercise 1: Frustated antiferromagnet: mean field

Consider N spins 1/2, in the presence of a magnetic field  $\mathbf{H}=H\hat{y}$ , at the sites of a triangular lattice (2 dimensions!) with nearest neighbours antiferromagnetic coupling  $J=-K_BT_N$  and  $K_B$  the Boltzmann constant and  $T_N$  a temperature. The triangular lattice can be seen as a collection of one dimensional lattices (say in the x direction) with lattice parameter *a*, parallel to each other. The lattice has area A, so that the density of sites is n=N/A. Moreover that lattice can be seen as made by two sublattices, *A* and *B*, made by lines of type *A* and *B* respectively.



- 1. First of all consider independent spins (1/2) in the external magnetic field **H**=Hŷ and compute the free energy of a spin in the presence of the field **H**.
- 2. Using the result of the previous point, compute the average magnetization  $\mathcal{M}$  of a single spin.
- 3. Write down the hamiltonian of the interacting system.
- 4. Make a mean field approximations, assuming that the spins in the alternating horizontal *lines A* and *B* have average values  $\langle S_x \rangle = 0$  and  $(n\mu_Bg/2)\langle S_y \rangle = M_A$  on sublattice *A* and  $\langle S_x \rangle = 0$  and  $(n\mu_Bg/2)\langle S_y \rangle = M_B$  on sublattice *B*. Calculate the effective magnetic fields  $h_A$  and  $h_B$ , respectively at a site *A* and *B*. Here,  $M_A$  and  $M_B$  are sublattice magnetization densities:  $M_A = (n/2) \mathcal{M}_A$ ,  $M_B = (n/2) \mathcal{M}_B$ , and  $\mathcal{M}_A$  and  $\mathcal{M}_B$  are single spin magnetizations, as calculated at point 2 above. NOTE: the effective field at a site is obtained adding to the external field the interaction with the 6 nearest neighbours, some of which are on sublattice *A* and some on sublattice *B*.
- 5. Write down the two selfconsistent equations for  $M_A$  and  $M_B$  when H=0. Remember that  $\mathcal{M}_A$  and  $\mathcal{M}_B$  are each function of the effective fields at the chosen sublattice.
- 6. Assuming that  $M_A = -M_B$ , show that there exists a critical temperature T<sub>c</sub>, below which non zero sub lattice magnetizations are predicted.

## Exercise 2: Lattice specific heat in D dimensions

Consider a lattice in dimension D, with *acoustic* phonon branches with small wave vector dispersion  $\omega_s(\mathbf{k})=\omega_{0s} (k/q_s)^{\nu}$ , s=1,2,... D,  $\nu>0$  and  $\omega_0$  and  $q_s$  a given frequency and a given wave vector. Denote with  $\Omega_D$  the *solid angle* in D dimensions.

- 1. Express the energy density (energy per unit volume) due to phonons at finite temperature in terms of an integral containing the phonon density of states  $g(\omega)$  and the Plank distribution.
- 2. Demonstrate that as T $\rightarrow$ 0 the energy density is determined solely by the density of states for  $\omega \rightarrow 0$ .
- 3. As the optical branches (if there is more than one atom in the basis) have finite energy for every k in the FBZ, at small energy (frequency) the phononic density of states  $g(\omega)$  is completely determined by the acoustic branches at small k. Calculate  $g(\omega)$  at small frequencies.
- 4. Use the density of states found above in the expression for the energy density found at point 1 and extend the frequency integral to infinity, motivating the accuracy of such a choice.
- 5. Manipulate the expression for the energy density found at the previous point in such a way to obtain an integral that is temperature independent, and discuss its convergence properties.
- 6. Obtain the dependence on temperature, as  $T \rightarrow 0$ , of the lattice specific heat.