
Condensed Matter Physics II. – A.A. 2016-2017, June 7, 2017

(time 3 hours)

Solve the following two exercises.

NOTE:

• Give all details which help in understanding the proposed solution. Answers which
only contain the final result or not enough detail will be judged insufficient and
discarded;

• If you are requested to give evaluation/estimates, do so using 3 significant figures.

Exercise 1: Heisenberg ferromagnet on a square lattice with nearest neighbors coupling

Consider S=1/2 spins on a square lattice (2D) with a ferromagnetic nearest neighbors
coupling J. The lattice has lattice parameter a and a non vanishing magnetic field H is
present.

1. Write down the expression of the excitation energy ε(H,k) of spin waves.

2. As we are interested with low temperature T, consider to leading order in k the
expansion of ε(H,k) for small k. You should get to leading order in k an expression
like ε(H,k) ' gµBH + c× k2. Explicitely calculate the coefficient c.

3. Implement a Debye like approximation in which you replace ε(H,k) with the
expression valid for small k at all k < kD, where the disk of radious kD contains
exactly N values of k and N is the number of sites in the 2D crystal. Calculate
the energy density of state for the spin waves in such an approximation. Define the
Debye temperature from εD = KBTD = ε(H = 0, kD).

4. Specialize eq. (33.30) of the textbook to the present 2D case to obtain M(H,T ).
You just need to replace the volume V with the surface A, and the excitation energy
ε(k) with ε(H,k) found above. You can then replace the k-integral with an energy
integral, employing the energy density of states found for the spin waves.

5. Explicitely calculate M(H,T ) by performing the energy integral found above. The
necessary integral is an elementary one. Recall

∫
dx(ex − 1)−1 = ln(1− e−x).

6. Choosing 4πJ = 1eV , estimate the Debye temperature TD and show that at
0 < T � TD when you decrease H there is a small but finite H(T ) at which
M(H,T ) vanishes, implying that in 2D there is no spontaneous magnetization at
any finite temperature.



Exercise 2: Cooper pai in p-wave

Consider the addition of 2 electrons to a normal metal ( a full Fermi sea, i.e., a system of
non interacting electrons filling a sphereof radious kF in k-space .

The added electrons attract each other and one can treat the problem of the extra electrons
as obeying the equation:[
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]
Ψ(r1, r2) = 0. (1)

1. Rewrite eq. (1) for the ground state. Assume that the ground state has the center
of mass at rest and expand Ψ(r1, r2) = φ0(r), with r = r1 − r2, in plane waves
outside the Fermi sphere, i.e., φ0(r) =

∑
k g(k)exp(ik · r).

2. Assume that the matrix element between normalized plave waves 〈q|U |k〉 is non
vanishing with value 〈q|U |k〉 = −(U1/V )q̂ · k̂, only for plane waves satisfying
εF ≤ ε(0)(q), ε0(k) ≤ εF + h̄ωD, and ωD is a typical Debye frequency and U1 > 0.

3. Say what is the symmetry of g(k) for singlet and triplet.

4. What is the minimum energy for the singlet?

5. For the triplet use the addition formulae reported below expanding g(k) in spherical
harmonics, g(k) =

∑
l

∑l
m=−l glm(k)Ylm(k̂), and obtain which glm(k) are non-zero

and the equation they satisfy.

6. Solve the equation obtained above for the binding energy by rewriting it in terms
of the density of state of the non-interacting Fermi sea, and exploiting the fact that
h̄ωD � εF .

NOTA:

• If you are requested to give evaluation/estimates, do so using 3 significant figures.

• The addition formula provides the cosine of the angle between 2 given directions in
terms of spherical harmonics as follows:
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Y ∗1,m(k̂)Y1,m(q̂).

Notice that the m sum is from -1 to 1!

Also, recall that Ylm(k̂) = Ylm(θ, φ) form an orthonormal set of functions with
respect to integration in the 3D solid angle, where θ and φ are respectively the
polar and azimuthal angles. You may conveniently use Ylm(q̂) = Ylm(θ′, φ′).


