Condensed Matter Physics II. - A.A. 2010-2011, June 102011

(time 3 hours)
Solve the following two exercises, each has a maximum score of 18 for a total of 36 . A score between 33 e 36 corresponds to 30 cum laude, between 30 e 32 is renormalized to 30 (the maximum official score, without laude).

NOTE:

- Give all details which help in understanding the proposed solution. Answers which only contain the final result or not enough detail will be judged insufficient and discarded;
- If you are requested to give evaluation/estimates, do so using 3 significant figures.

Esercizio 1 Localized excitation kin a linear chain.
Consider the harmonic vibrations (phonons) in an infinite linear chain of equispaced atoms, with lattice parameter a, and springs of constant G connecting each atom to its nearest neighbors.

1. (4 points) Write down the independent solutions $u_{ \pm}(q, n, t)$ of the dynamical problem as plane waves, with q, n, t respectively a wavevector in the FBZ, a lattice position and time. You may conveniently think of a chain of length $L=N a$, with PBC. For each $-\pi / a \leq q<\pi / a \pm$ denotes the mode respectively with $\pm \omega(q)$.
2. (6 points) Consider now a linear combination of the modes with amplitudes (i) $-a_{+}(q)=a_{-}(q)=a(q)=C \exp (-|q| l)$ and $C=-\mathrm{i}(\pi / \mathrm{L})(\mathrm{l} \mathrm{a} / 10)$, assuming (ii) $l \gg a / \pi$, so that only acoustic modes have an appreaciable weight in the linear combination. Calculate

$$
u(n, t)=\sum_{\sigma= \pm, q} a_{\sigma}(q) u_{\sigma}(q, n, t)
$$

We remark that due to condition (ii) above, in the linear combination the mode dispersion can be taken acoustic and the integral over q can be extended to all q-space, i.e., over $[-\infty, \infty]$.
3. (2 points) Are there atoms displaced from the equilibrium positions at $t=0$.
4. (3 points) Calculate the speed of each atom at $t=0$.
5. (3 points) Which atoms are displaced from equilibrium at $t=m a / c$, with $m a \gg l$ and c the sound velocity: please, answer by giving a qualitative sketch of the displacements along the chain!

Note: in the version given in class the definition of C did not include the factor -i , with i the imaginary unit!

Esercizio 2 Pauli susceptibility

Consider a non interacting electron gas in 3 dimensions, in a uniform magnetic field $\mathbf{B}=B \hat{z}$.

1. (3 points) Write the kinetic energy T_{\uparrow} for the spin up electrons, assuming that their number is N_{\uparrow}; similarly write T_{\downarrow} for the spin down electrons, if their number is N_{\downarrow}.
2. (3 points) Write down the energy E_{z} giving the interaction of the electron spins with the magnetic field \mathbf{B}.
3. (3 points) Use $N_{\uparrow}=(N / 2)(1+\zeta), N_{\downarrow}=(N / 2)(1-\zeta)$ to express the total energy $E=T_{\uparrow}+T_{\downarrow}+E_{z}$ in terms of N, ζ and B, namely to get $E(N, \zeta, B)$.
4. (3 points) Minimize $E(N, \zeta, B)$ with respect to ζ, i.e. imposes the extrememum condition, at given N and B and write the resulting relation between ζ a B.
5. (3 points) Solve the above equation in the limit of small ζ.
6. (3 points) Calculate Pauli susceptibility $\chi_{P}=-\mu_{B} d \zeta / d B$. Say what is the relation between the present result and the one in the A.M. book.
