Condensed Matter Physics II. - A.A. 2018-2019, 10 maggio, 2019

(time 3 hours)

Solve the following two exercises.

NOTE:

- Give all details which help in understanding the proposed solution. Answers which only contain the final result or not enough detail will be judged insufficient and discarded;
- If you are requested to give evaluation/estimates, do so using 3 significant figures.

Exercise 1: LDA (with exchange) for the electron gas

- 1. Consider the energy per particle of the electron gas (eq. 17.23, Aschcrogt & Mermin), express it in terms of the density $\rho = N/V$, name it $\epsilon(\rho)$, and use atomic units, $\hbar = e = m = 1$. I suggest that you define two constants for the coefficients of the two density powers.
- 2. Write the internal energy functional (kinetic + exchange energies only!).
- 3. Using the result above, write the full energy functional (kinetic + exchange energies + interaction with external potential $v(\mathbf{r})$) and impose the extremum condition.
- 4. Use the extremum condition to obtain an expression for $\rho(\mathbf{r})$. As you should have got a quadratic equation you should have two solutions.
- 5. Demonstrate that if the second functional derivative with respect to $\rho(\mathbf{r})$ of the energy functional has the form $g(\rho(\mathbf{r}))\delta(\mathbf{r}-\mathbf{r}')$ a necessary condition for a minimum is that $g(\rho(\mathbf{r})) > 0$.
- 6. Calculate the second functional derivative with respect to $\rho(\mathbf{r})$ of the energy functional and use it to select the solution that correspond to a minimum.
- 7. If $v(\mathbf{r}) = -V_0 \theta(R-r)$, what is the condition on μ in order to get a finite number of particles in the potential well?

Exercise 2: Doped semiconductor

Consider a semiconductor in the intrinsic regime with an energy gap gap $E_g = 1.43 eV$. It is known from cyclotron resonance experiments at B = 1 tesla that electrons at the top of the valence band have $\omega_c = 3.52 \times 10^{11}$ cycles and electrons at the bottom of the conduction band $\omega_c = 2.67 \times 10^{12}$ cycles. It is also known that the photoabsorption threshold of the semiconductor at very low temperature and doped only with donors is at 5.07×10^{-3} eV. Both the conduction and valence bands have a spherical dispersion.

- 1. Evaluate the effective masses at the bottom of the conduction band and the top of the valence band, in units of m_e .
- 2. What is the value (in eV) of the binding energy of the donor level?
- 3. What is the value of the dielectric constant of the semiconductor?
- 4. Compute the effective Bohr radius a_B^* of the donor level (in units of a_B).
- 5. Is the hydrogenic approximation reasonable for donors? Motivate your answer.
- 6. At very low temperature, at which energy photoabsorption would begin (i) when only acceptors are present and (ii) when acceptors and donors are present and $N_d > N_a$?