Condensed Matter Physics II. - A.A. 2021-2022, April 29, 2022

(time 3 hours)
Solve the following two exercises.
NOTE:

- Give all details which help in understanding the proposed solution. Answers which only contain the final result or not enough detail will be judged insufficient and discarded;
- If you are requested to give evaluation/estimates, do so using 3 significant figures.

Exercise 1: $L D A$ (with exchange) for a $2 D$ electron gas with linear dispersion
Consider Electrons in 2D with a kinetic energy per electron linear in the wavevector k and the familiar pair interaction e^{2} / r. In plane-wave Hartree-Fock the kinetic energy per particle is $t(\rho)=A \sqrt{\rho}$, with $A=\alpha \sqrt{2 \pi} / 3$ and α a positive constant, and the exchange energy $\epsilon_{x}(\rho)=-B \sqrt{\rho}$ with $B=\left(4 e^{2} \sqrt{2 \pi}\right) /(3 \pi)$. Thus the energy per particle is

$$
\epsilon(\rho)=(A-B) \sqrt{\rho} \equiv 2 C \sqrt{\rho} / 3 .
$$

Note that, depending on the values of A and B, C may be positive, zero o negative. $\rho=N / A$ is the Fermions density.

1. Write in LDA the internal energy functional $E_{I}[\rho]$ (kinetic + exchange energies only).
2. Using the result above, write the full energy functional $E[\rho]$ (kinetic + exchange energies + interaction with external potential) and impose the extremum condition on $F[\rho]=E[\rho]-\mu \int d \mathbf{r} \rho(\mathbf{r})$ (zero first functional derivative or first variation $\Delta_{1} F[\rho]$.
3. Use the extremum condition to obtain an expression for $\rho(\mathbf{r})$.
4. Calculate the second variation $\Delta_{2} F[\rho]$ and imposing its positivity obtain the condition under which the extremum is a minimum, yielding an equilibrium density $\rho(\mathbf{r})$.
5. Give the expression of the equilibrium $\rho(\mathbf{r})$ when

$$
v(\mathbf{r})=\left(v_{0} / 2\right) \cos (2 \pi x / l), \quad \mu=v_{0} / 2,
$$

with v_{0} and l positive.
6. Provide qualitative skecthes of $\mathrm{v}(\mathbf{r})$ and of $\rho(\mathbf{r})$.

Exercise 2: Effective masses in a semiconductor

Let's recall eq. (28.8) of AS:

$$
m^{*}(\beta)=\sqrt{\frac{m_{1} m_{2} m_{3}}{m_{1} \beta_{1}^{2}+m_{2} \beta_{2}^{2}+m_{3} \beta_{3}^{2}}}, \quad \beta_{1}^{2}+\beta_{2}^{2}+\beta_{3}^{2}=1
$$

1. Performing experiments in a magnetic field one finds that varying β_{1} or β_{2} at fixed $\beta_{3} m^{*}$ does not change. What is the implication of this fact on m_{1} and m_{2}. Motivate in detail your conclusions.
2. An experiment with $\beta_{3}=1$ yields $m * / m_{e}=0.190$. This, together with the conclusion found in the previous point, provides the value of 2 of the eigenvalues of the mass tensor. Give them with 3 significant figures.
3. An experiment with $\beta_{3}=0$ yields $m * / m_{e}=0.418$. This provides the third eigenvalue of the mass tensor. Give it with 3 significant figures.
4. The knowledge of the 3 eigenvalues of the mass tensor allows to evaluate the constant C multiplying $\sqrt{\left|E-E_{c, v}\right|}$ in eq. 28.14 of AM. Calculate C in $\mathrm{cm}^{-3} \mathrm{erg}^{-3 / 2}$
5. What is the shape of the orbits for a magnetic field lying along the \hat{x}_{2} axis? Give a detailed derivation.
6. What will be the measured cyclotron frequency (in cm^{-1}) for a magnetic field with $\hat{H}=(1 / \sqrt{3})(1,1,1)$ and $H=1$ gauss?
