Condensed Matter Physics II. - A.A. 2012-2013, May 82013

(time 3 hours)
Solve the following two exercises, each has a maximum score of 18 for a total of 36. A score between 33 e 36 corresponds to 30 cum laude, between 30 e 32 is renormalized to 30 (the maximum official score, without laude).

NOTE:

- Give all details which help in understanding the proposed solution. Answers which only contain the final result or not enough detail will be judged insufficient and discarded;
- If you are requested to give evaluation/estimates, do so using 3 significant figures.

Exercise 1: Stoner model in 2 D

Consider Fermions of spin $1 / 2$ in 2D with a pair interaction that in atomic units ($\hbar=m=e=1$) reads $(U / n) \delta\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)$, with the constant U the interaction strengh and n the areal density. A magnetic field along z is also present, so that the Hamiltonian is

$$
\sum_{i}^{N}\left[-\frac{\nabla_{i}^{2}}{2}+2 \mu_{B} B S_{z, i}\right]+\frac{1}{2} \sum_{i \neq j}(U / n) \delta\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)
$$

and $B>0$. Consider the HF approximation with a Slater determinant with N_{\uparrow} Fermions with spin up, which occupy the plane waves of a Fermi disk of radius $K_{F, \uparrow}$, and N_{\downarrow} Fermions with spin down, which occupy the plane waves of a Fermi disk of radius $K_{F, \downarrow}$.

1. Calculate the kinetic energy per Fermion.
2. Try to calculate interaction energy among the Fermions; you should get an energy per Fermion

$$
U \frac{N_{\uparrow} N_{\downarrow}}{N^{2}}
$$

3. Combining the energy of the previous two points with the interaction energy of spins with the magnetic field get the total energy per Fermion $e(n, \zeta, B)$, as function of the areal density $n=n_{\uparrow}+n_{\downarrow}$, the spin polarization $\zeta=\left(n_{\uparrow}-n_{\downarrow}\right) / n$, and the field B.
4. Get the equilibrium $\zeta(n, B)$, i.e., the polarization that minimizes the total energy at given n, B. Remember that $-1 \leq \zeta \leq 1$ and that to find the absolute minimum of a function on a segment one looks at first and second derivatives of the function as well as to the values of the function on the boundary.

5 . What's the expression of $\zeta(n, B)$ at large density?
6 . Wht's the value of $\zeta(n, B)$ for small density?

Exercise 2: 2D semiconductor on a triangular lattice
Let us consider a 2D system whereby divalent atoms occupy the sites of a triangular lattice. Each atom releases 2 electrons, forming a divalent positive ion. The 2 bands lowest in energy have the tight-binding form:

$$
\begin{gathered}
E_{v}(\mathbf{q})=2 \gamma_{v}\left(-3+\cos \left(q_{x} a\right)+2 \cos \left(q_{x} a / 2\right) \cos \left(q_{y} a \sqrt{3} / 2\right),\right. \\
E_{c}(\mathbf{q})=2 \Delta-2 \gamma_{c}\left(-3+\cos \left(q_{x} a\right)+2 \cos \left(q_{x} a / 2\right) \cos \left(q_{y} a \sqrt{3} / 2\right) .\right.
\end{gathered}
$$

1. At $T=0$ the system is a metal or an insulator and why?
2. Expand $E_{v}(\mathbf{q})\left[E_{c}(\mathbf{q})\right]$ near its maximum ([minimum] in q-space, to second order.
3. Using the previous result, calculate the density of states $g_{v}(E)\left[g_{v}(E)\right]$ of $E_{v}(\mathbf{q})$ $\left[E_{c}(\mathbf{q})\right]$ near its maximum [minimum].
4. Assuming that the semiconductor is in the non-degenerate regime calculate the concentrations of electrons $n_{c}(T)$ and holes $p_{v}(T)$, respectivley in the conduction and valence band, at low temperature.
5. Imposing the equality $n_{c}(T)=p_{v}(T)$ (clean semiconductor) obtain $\mu(T)$.
6. Determine the value of γ_{c} / γ_{v} that, for small temperature, yields $\mu(T)=\Delta+2 K_{B} T$.
