
54 From Boltzmann to Boltzmann–Gibbs

The normalized distribution ρ is

ρ = ρ̄∫
d"ρ̄

= δ(H − E)
ω(E)

, (3.28)

where ω(E) is the measure of the energy surface σ (E) and we have used the approximation
ρ̄ ≈ δ(H − E)&E valid for &E ≪ E . This shows that the energy uncertainty&E , provided
that the condition &E ≪ E is satisfied, does not play any role as far as ensemble averages
are concerned.

In the thermodynamic limit we can define the function

S = kB ln V" ∼kB ln ' ∼kB ln ω. (3.29)

Indeed the three definitions are equivalent in the large-N limit. The function S coincides
with the entropy of the system, i.e. it is additive and cannot decrease for an isolated system,
according to the probabilistic setting by Boltzmann. To see the property of additivity,
suppose that the system is decomposed into two parts in a such a way that the Hamiltonian
can be written as

H = H1({q1}, {p1}) + H2({q2}, {p2}), (3.30)

where the indices 1 and 2 label the two subsystems. The energy, the number of particles
and the volume of the two subsystems must satisfy the relations

E1 + E2 = E, (3.31)

N1 + N2 = N , (3.32)

V1 + V2 = V . (3.33)

To begin with let us imagine that the two systems can exchange energy and particles through
the separation wall dividing them, but maintain their respective volumes fixed. The volume
in the " space of the entire system can be decomposed in terms of the phase-space volumes
of the two subsystems as

V"(E, N ) =
N∑

N1=0

N !
N1!(N − N1)!

E/&E∑

k=1

V",1(Ek, N1)V",2(E − Ek, N − N1). (3.34)

To keep the notation simple, we do not indicate the volume dependence for the time being.
The binomial coefficient in the right-hand side of Eq. (3.34) counts the number of ways in
which we can assign N1 particles to the first subsystem and N2 = N − N1 to the second.
Given the uncertainty with which the energy is known, there are E/&E ways in which we
can distribute the energy between the two subsystems.

Among all the terms in the two sums over N1 and k, the biggest contribution comes from
the values N̄1 (and N̄2 = N − N̄1) and Ē1 (and Ē2 = E − Ē1) for which the single term

N !
N1!(N − N1)!

V",1(Ek, N1)V",2(E − Ek, N − N1) (3.35)

is maximum.
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55 3.4 The microcanonical ensemble and the entropy

Since (3.34) is a sum of positive terms,

V!,1(Ē1, N̄1)

N̄1!

V!,2(Ē2, N̄2)

N̄2!
≤ V!(E, N )

N !
≤ N E

"E
V!,1(Ē1, N̄1)

N̄1!

V!,2(Ē2, N̄2)

N̄2!
, (3.36)

we conclude that

kB ln
V!,1(Ē1, N̄1)

N̄1!
+ kB ln

V!,2(Ē2, N̄2)

N̄2!

≤ kB ln
V!(E, N )

N !

≤ kB ln
V!,1(Ē1, N̄1)

N̄1!
+ kB ln

V!,2(Ē2, N̄2)

N̄2!
+ kB ln

N E
"E

. (3.37)

In the thermodynamic limit, N → ∞, the last term on the right-hand side of (3.37) becomes
negligible and we obtain

S(E, N ) = S1(Ē1, N̄1) + S2(Ē2, N̄2) (3.38)

where, in order to satisfy the additivity property with respect to the number of particles, the
definition of the entropy (3.29) has been modified as

S(E, N ) = kB ln
V!(E, N )

h3N N !
, (3.39)

consistently with Eq. (3.21). The conditions fixing the values Ē1, Ē2, N̄1, N̄2 for which the
quantity in Eq. (3.35) is a maximum are

∂

∂ E1
(S1(E1, N1))E1=Ē1,N1=N̄1

= ∂

∂ E2
(S2(E2, N2))E2=Ē2,N2=N̄2

, (3.40)

∂

∂ N1
(S1(E1, N1))E1=Ē1,N1=N̄1

= ∂

∂ N2
(S2(E2, N2))E2=Ē2,N2=N̄2

. (3.41)

From the thermodynamic relation (1.22) we see that the condition (3.40) expresses the
thermal equilibrium among the two subsystems,

1
T1

= 1
T2

, (3.42)

and among all the possible energy pairs only one realizes the equilibrium between the two
subsystems, assigning to each one its internal energy.

By recalling the other thermodynamic relation (1.30) the condition (3.41) gives the
chemical equilibrium among the subsystems:

−µ1

T1
= −µ2

T2
⇒ µ1 = µ2, (3.43)

after using (3.42). The partition of the number of particles at equilibrium is such that each
subsystem assumes its Gibbs free energy and their values per particle are equal.

Finally, by allowing the two subsystems to vary their volumes V1 and V2 with the condition
that the total volume V remains fixed, after the thermodynamic relation (1.22) we have in
a similar manner the condition expressing the mechanical equilibrium P1 = P2.
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