LTI Discrete-Time Systems in the Transform Domain

• An LTI discrete-time system is completely characterized in the time-domain by its impulse response sequence \(\{ h[n] \} \)

• Thus, the transform-domain representation of a discrete-time signal can also be equally applied to the transform-domain representation of an LTI discrete-time system

Finite-Dimensional LTI Discrete-Time Systems

• In this course we shall be concerned with LTI discrete-time systems characterized by linear constant coefficient difference equations of the form:

\[
\sum_{k=0}^{N} d_k y[n-k] = \sum_{k=0}^{M} p_k x[n-k]
\]

Finite-Dimensional LTI Discrete-Time Systems

• Applying the DTFT to the difference equation and making use of the linearity and the time-invariance properties of Table 3.2 we arrive at the input-output relation in the transform-domain as

\[
\sum_{k=0}^{N} d_k e^{-j\omega k} Y(e^{j\omega}) = \sum_{k=0}^{M} p_k e^{-j\omega k} X(e^{j\omega})
\]

where \(Y(e^{j\omega}) \) and \(X(e^{j\omega}) \) are the DTFTs of \(y[n] \) and \(x[n] \), respectively

Finite-Dimensional LTI Discrete-Time Systems

• In developing the transform-domain representation of the difference equation, it has been tacitly assumed that \(X(e^{j\omega}) \) and \(Y(e^{j\omega}) \) exist

• The previous equation can be alternately written as

\[
\left\{ \sum_{k=0}^{N} d_k e^{-j\omega k} \right\} Y(e^{j\omega}) = \left\{ \sum_{k=0}^{M} p_k e^{-j\omega k} \right\} X(e^{j\omega})
\]

Finite-Dimensional LTI Discrete-Time Systems

• Applying the \(z \)-transform to both sides of the difference equation and making use of the linearity and the time-invariance properties of Table 3.9 we arrive at

\[
\sum_{k=0}^{N} d_k z^{-k} Y(z) = \sum_{k=0}^{M} p_k z^{-k} X(z)
\]

where \(Y(z) \) and \(X(z) \) denote the \(z \)-transforms of \(y[n] \) and \(x[n] \) with associated ROCs, respectively
Finite-Dimensional LTI Discrete-Time Systems

• A more convenient form of the z-domain representation of the difference equation is given by

\[y(z) = \left(\sum_{k=0}^{N} d_k z^{-k} \right) X(z) = \left(\sum_{k=0}^{M} p_k z^{-k} \right) X(z) \]

The Frequency Response

• Most discrete-time signals encountered in practice can be represented as a linear combination of a very large, maybe infinite, number of sinusoidal discrete-time signals of different angular frequencies.

• Thus, knowing the response of the LTI system to a single sinusoidal signal, we can determine its response to more complicated signals by making use of the superposition property.

• A complex exponential input signal \(e^{j\omega n} \), the output signal is also a complex exponential signal of the same frequency multiplied by a complex constant \(e^{j\theta} \).

• Thus \(e^{j\omega n} \) is an eigen function of the system.
The Frequency Response

- The quantity \(H(e^{j\omega}) \) is called the **frequency response** of the LTI discrete-time system.
- \(H(e^{j\omega}) \) provides a frequency-domain description of the system.
- \(H(e^{j\omega}) \) is precisely the DTFT of the impulse response \(\{h[n]\} \) of the system.

\[
H(e^{j\omega}) = \sum_{n=-\infty}^{\infty} h[n] e^{-j\omega n}
\]

The Frequency Response

- In general, \(H(e^{j\omega}) \) is a complex function of \(\omega \) with a period \(2\pi \).
- It can be expressed in terms of its real and imaginary parts:
 \[
 H(e^{j\omega}) = H_{re}(e^{j\omega}) + jH_{im}(e^{j\omega})
 \]
- Or, in terms of its magnitude and phase:
 \[
 H(e^{j\omega}) = |H(e^{j\omega})| e^{j\theta(\omega)}
 \]
 where \(\theta(\omega) = \arg H(e^{j\omega}) \).

The Frequency Response

- The function \(|H(e^{j\omega})| \) is called the **magnitude response** and the function \(\theta(\omega) \) is called the **phase response** of the LTI discrete-time system.
- Design specifications for the LTI discrete-time system, in many applications, are given in terms of the magnitude response or the phase response or both.

\[
|H(e^{j\omega})| = \sqrt{H_{re}(e^{j\omega})^2 + H_{im}(e^{j\omega})^2}
\]

The Frequency Response

- In some cases, the magnitude function is specified in **decibels** as:
 \[
 G(\omega) = 20 \log_{10} |H(e^{j\omega})| \ dB
 \]
 where \(G(\omega) \) is called the **gain function**.
- The negative of the gain function
 \[
 A(\omega) = -G(\omega)
 \]
 is called the **attenuation** or **loss function**.

The Frequency Response

- Note: Magnitude and phase functions are real functions of \(\omega \), whereas the frequency response is a complex function of \(\omega \).
- If the impulse response \(h[n] \) is real then it follows from Table 3.4 that the magnitude function is an even function of \(\omega \):
 \[
 |H(e^{j\omega})| = |H(e^{-j\omega})|
 \]
 and the phase function is an odd function of \(\omega \):
 \[
 \theta(\omega) = -\theta(-\omega)
 \]

The Frequency Response

- Likewise, for a real impulse response \(h[n] \), \(H_{re}(e^{j\omega}) \) is even and \(H_{im}(e^{j\omega}) \) is odd.
- **Example** - Consider the \(M \)-point moving average filter with an impulse response given by:
 \[
 h[n] = \begin{cases}
 1/M, & 0 \leq n \leq M-1 \\
 0, & \text{otherwise}
 \end{cases}
 \]
 Its frequency response is then given by:
 \[
 H(e^{j\omega}) = \frac{1}{M} \sum_{n=0}^{M-1} e^{-j\omega n}
 \]
The Frequency Response

- Or, \[H(e^{j\omega}) = \frac{1}{M} \left(\sum_{n=0}^{\infty} e^{-j\omega n} - \sum_{n=M}^{\infty} e^{-j\omega n} \right) \]
 \[= \frac{1}{M} \left(\sum_{n=0}^{\infty} e^{-j\omega n} \right) (1 - e^{-jM\omega}) = \frac{1}{M} \left(\frac{1 - e^{-jM\omega}}{1 - e^{-j\omega}} \right) \]
 \[= \frac{1}{M} \frac{\sin(M\omega/2)}{\sin(\omega/2)} e^{-j(M-1)\omega/2} \]

Frequency Response Computation Using MATLAB

- The function `freqz(h, w)` can be used to determine the values of the frequency response vector \(h \) at a set of given frequency points \(w \).
- From \(h \), the real and imaginary parts can be computed using the functions `real` and `imag`, and the magnitude and phase functions using the functions `abs` and `angle`.

Frequency Response Computation Using MATLAB

- The phase response of a discrete-time system when determined by a computer may exhibit jumps by an amount \(2\pi \) caused by the way the arctangent function is computed.
- The phase response can be made a continuous function of \(\omega \) by unwrapping the phase response across the jumps.

The Frequency Response

- Thus, the magnitude response of the \(M \)-point moving average filter is given by
 \[|H(e^{j\omega})| = \frac{1}{M} \frac{\sin(M\omega/2)}{\sin(\omega/2)} \]
 and the phase response is given by
 \[\theta(\omega) = -\frac{(M-1)\omega}{2} + \frac{[\omega^2]}{\pi} \sum_{k=0}^{M/2} \left(\omega - \frac{2\pi k}{M} \right) \]

Frequency Response Computation Using MATLAB

- Example: Program 4.1 can be used to generate the magnitude and gain responses of an \(M \)-point moving average filter as shown below.

- To this end the function `unwrap` can be used, provided the computed phase is in radians.
- The jumps by the amount of \(2\pi \) should not be confused with the jumps caused by the zeros of the frequency response as indicated in the phase response of the moving average filter.
Steady-State Response

• Note that the frequency response also determines the steady-state response of an LTI discrete-time system to a sinusoidal input

• Example - Determine the steady-state output $y[n]$ of a real coefficient LTI discrete-time system with a frequency response $H(e^{j\omega})$ for an input

$$x[n] = A \cos(\omega_o n + \phi), \quad -\infty < n < \infty$$

Steady-State Response

• We can express the input $x[n]$ as

$$x[n] = g[n] + g^*[n]$$

where

$$g[n] = \frac{1}{2} A e^{j\phi} e^{j\omega_o n}$$

• Now the output of the system for an input $e^{j\omega_o n}$ is simply

$$H(e^{j\omega_o}) e^{j\omega_o n}$$

Steady-State Response

• Because of linearity, the response $v[n]$ to an input $g[n]$ is given by

$$v[n] = \frac{1}{2} A e^{j\phi} H(e^{j\omega_o}) e^{j\omega_o n}$$

• Likewise, the output $v^*[n]$ to the input $g^*[n]$ is

$$v^*[n] = \frac{1}{2} A e^{-j\phi} H(e^{-j\omega_o}) e^{-j\omega_o n}$$

Steady-State Response

• Combining the last two equations we get

$$y[n] = v[n] + v^*[n]$$

$$= \frac{1}{2} A e^{j\phi} H(e^{j\omega_o}) e^{j\omega_o n} + \frac{1}{2} A e^{-j\phi} H(e^{-j\omega_o}) e^{-j\omega_o n}$$

$$= \frac{1}{2} A H(e^{j\omega_o}) \left[e^{j(\omega_o n + \phi)} e^{j\omega_o n} + e^{-j(\omega_o n + \phi)} e^{-j\omega_o n} \right]$$

$$= \frac{1}{2} A H(e^{j\omega_o}) \cos(\omega_o n + \theta(\omega_o) + \phi)$$

Steady-State Response

• Thus, the output $y[n]$ has the same sinusoidal waveform as the input with two differences:

1. the amplitude is multiplied by $|H(e^{j\omega_o})|$ the value of the magnitude function at $\omega = \omega_o$
2. the output has a phase lag relative to the input by an amount $\theta(\omega_o)$, the value of the phase function at $\omega = \omega_o$

Response to a Causal Exponential Sequence

• The expression for the steady-state response developed earlier assumes that the system is initially relaxed before the application of the input $x[n]$

• In practice, excitation $x[n]$ to a discrete-time system is usually a right-sided sequence applied at some sample index $n = n_o$

• We develop the expression for the output for such an input
Response to a Causal Exponential Sequence

• Without any loss of generality, assume \(x[n] = 0 \) for \(n < 0 \)

• From the input-output relation

\[
y[n] = \sum_{k=-\infty}^{\infty} h[k] x[n-k]
\]

we observe that for an input

\[
x[n] = e^{j\omega n} u[n]
\]

the output is given by

\[
y[n] = \left(\sum_{k=-\infty}^{\infty} h[k] e^{j\omega(n-k)} \right) u[n]
\]

Response to a Causal Exponential Sequence

• Or,

\[
y[n] = \left(\sum_{k=0}^{n} h[k] e^{-j\omega n} \right) e^{j\omega n} u[n]
\]

• The output for \(n < 0 \) is \(y[n] = 0 \)

• The output for \(n \geq 0 \) is given by

\[
y[n] = \left(\sum_{k=0}^{\infty} h[k] e^{-j\omega k} \right) e^{j\omega n} - \left(\sum_{k=n+1}^{\infty} h[k] e^{-j\omega k} \right) e^{j\omega n}
\]

Response to a Causal Exponential Sequence

• The second term on the RHS is called the transient response:

\[
y_{tr}[n] = - \left(\sum_{k=n+1}^{\infty} h[k] e^{-j\omega k} \right) e^{j\omega n}
\]

• To determine the effect of the above term on the total output response, we observe

\[
y_{tr}[n] = \left| \sum_{k=n+1}^{\infty} h[k] e^{-j\omega(k-n)} \right| \leq \sum_{k=n+1}^{\infty} |h[k]| \leq \sum_{k=0}^{\infty} |h[k]|
\]

Response to a Causal Exponential Sequence

• For a causal, stable LTI IIR discrete-time system, \(h[n] \) is absolutely summable

• As a result, the transient response \(y_{tr}[n] \) is a bounded sequence

• Moreover, as \(n \to \infty \),

\[
\sum_{k=n+1}^{\infty} |h[k]| \to 0
\]

and hence, the transient response decays to zero as \(n \) gets very large

Response to a Causal Exponential Sequence

• For a causal FIR LTI discrete-time system with an impulse response \(h[n] \) of length \(N + 1 \), \(h[n] = 0 \) for \(n > N \)

• Hence, \(y_{tr}[n] = 0 \) for \(n > N - 1 \)

• Here the output reaches the steady-state value \(y_{st}[n] = H(e^{j\omega}) e^{j\omega n} \) at \(n = N \)
The Concept of Filtering

• One application of an LTI discrete-time system is to pass certain frequency components in an input sequence without any distortion (if possible) and to block other frequency components.

• Such systems are called digital filters and one of the main subjects of discussion in this course.

The Concept of Filtering

• The key to the filtering process is

\[x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega \]

• It expresses an arbitrary input as a linear weighted sum of an infinite number of exponential sequences, or equivalently, as a linear weighted sum of sinusoidal sequences.

The Concept of Filtering

• Thus, by appropriately choosing the values of the magnitude function \(|H(e^{j\omega})| \) of the LTI digital filter at frequencies corresponding to the frequencies of the sinusoidal components of the input, some of these components can be selectively heavily attenuated or filtered with respect to the others.

The Concept of Filtering

• To understand the mechanism behind the design of frequency-selective filters, consider a real-coefficient LTI discrete-time system characterized by a magnitude function

\[|H(e^{j\omega})| = \begin{cases} 1, & |\omega| \leq \omega_c \\ 0, & \omega_c < |\omega| \leq \pi \end{cases} \]

The Concept of Filtering

• We apply an input \(x[n] = A \cos(\omega_1 n) + B \cos(\omega_2 n), \quad 0 < \omega_1 < \omega_c < \omega_2 < \pi \) to this system.

• Because of linearity, the output of this system is of the form

\[y[n] = A H(e^{j\omega_1}) \cos(\omega_1 n + \theta(\omega_1)) + B H(e^{j\omega_2}) \cos(\omega_2 n + \theta(\omega_2)) \]

The Concept of Filtering

• As

\[|H(e^{j\omega_1})| \equiv 1, \quad |H(e^{j\omega_2})| \equiv 0 \]

the output reduces to

\[y[n] \equiv A H(e^{j\omega_1}) \cos(\omega_1 n + \theta(\omega_1)) \]

• Thus, the system acts like a lowpass filter.

• In the following example, we consider the design of a very simple digital filter.
The Concept of Filtering

- **Example** - The input consists of a sum of two sinusoidal sequences of angular frequencies 0.1 rad/sample and 0.4 rad/sample.
- We need to design a highpass filter that will pass the high-frequency component of the input but block the low-frequency component.
- For simplicity, assume the filter to be an FIR filter of length 3 with an impulse response:
 \[h[0] = h[2] = \alpha, \quad h[1] = \beta \]

The convolution sum description of this filter is then given by:

\[
\]

- **Design Objective**: Choose suitable values of \(\alpha\) and \(\beta\) so that the output is a sinusoidal sequence with a frequency 0.4 rad/sample.

Thus, the two conditions that must be satisfied are:

\[
H(e^{j\omega}) = 2\alpha \cos(\omega) + \beta \]

\[
\theta(\omega) = -\omega
\]

In order to block the low-frequency component, the magnitude function at \(\omega = 0.1\) should be equal to zero.

Likewise, to pass the high-frequency component, the magnitude function at \(\omega = 0.4\) should be equal to one.

Thus the output-input relation of the FIR filter is given by:

\[
y[n] = -6.76195 (x[n] + x[n-2]) + 13.456335 x[n-1]
\]

where the input is

\[
x[n] = \{ \cos(0.1n) + \cos(0.4n) \} u[n]
\]

Program 4_2 can be used to verify the filtering action of the above system.
The Concept of Filtering

- The first seven samples of the output are shown below

<table>
<thead>
<tr>
<th>n</th>
<th>cos(0.1n)</th>
<th>cos(0.4n)</th>
<th>x[n]</th>
<th>y[n]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0</td>
<td>1.0</td>
<td>2.0</td>
<td>−13.52390</td>
</tr>
<tr>
<td>1</td>
<td>0.9950041</td>
<td>0.9210609</td>
<td>1.9160652</td>
<td>13.556333</td>
</tr>
<tr>
<td>2</td>
<td>0.8880665</td>
<td>0.8967067</td>
<td>1.6707333</td>
<td>0.9210616</td>
</tr>
<tr>
<td>3</td>
<td>0.8533364</td>
<td>0.8633977</td>
<td>1.3796442</td>
<td>0.6987364</td>
</tr>
<tr>
<td>4</td>
<td>0.8253356</td>
<td>0.8219955</td>
<td>0.8918614</td>
<td>0.3623572</td>
</tr>
<tr>
<td>5</td>
<td>0.7977525</td>
<td>0.7816168</td>
<td>0.6014517</td>
<td>−0.0292002</td>
</tr>
<tr>
<td>6</td>
<td>0.7703356</td>
<td>0.7637907</td>
<td>0.0879419</td>
<td>−0.4163467</td>
</tr>
</tbody>
</table>

- From this table, it can be seen that, neglecting the least significant digit,

\[y[n] = \cos(0.4(n - 1)) \quad \text{for } n \geq 2 \]

- Computation of the present value of the output requires the knowledge of the present and two previous input samples

- Hence, the first two output samples, \(y[0] \) and \(y[1] \), are the result of assumed zero input sample values at \(n = -1 \) and \(n = -2 \)

- Therefore, first two output samples constitute the transient part of the output

- Since the impulse response is of length 3, the steady-state is reached at \(n = N = 2 \)

- Note also that the output is delayed version of the high-frequency component \(\cos(0.4n) \) of the input, and the delay is one sample period