Università degli Studi di Trieste Facoltà di Ingegneria

SECONDA PROVA SCRITTA DI LOGISTICA

Venerdì 28 maggio 2010

Nome:	
Cognome:	
Matricola	e CdL:

Esercizio 1

Si consideri la rete, non orientata e completa, caratterizzata dalle seguenti distanze:

	\boldsymbol{A}	B	\boldsymbol{C}	\boldsymbol{D}	E	F
\boldsymbol{A}	0	3	4	1	3	6
B	3	0	6	7	1	2
\overline{C}	4	6	0	3	4	1
\overline{D}	1	7	3	0	8	3
E	3	1	4	8	0	5
F	6	2	1	3	5	0

Determinare una soluzione ammissibile del TSP con l'euristica di inserimento del nodo più lontano e, successivamente, trovare una soluzione di minimo locale applicando scambi d'archi di tipo 2-OPT.

Si indichi chiaramente la soluzione così ottenuta ed il suo costo. Fornire inoltre una limitazione inferiore del costo ottimo.

Esercizio 2

Togliere il nodo F – e tutti gli archi ad esso incidenti – alla rete dell'esercizio 1. Determinare quindi una soluzione del problema del postino cinese; il nodo di partenza sia A. Successivamente, determinare una soluzione del problema del postino rurale nel caso in cui si debbano visitare tutti gli archi tranne quello (D, E).