

# Università degli studi di Trieste Facoltà di Ingegneria Laurea Specialistica in Ingegneria delle Telecomunicazioni

Prova Finale in Trasmissione Numerica

## L'IMPATTO DELLE ANTENNE SWITCHED BEAM IN RETI WIRELESS DI SENSORI

Relatore:

Chiar.mo Prof. Fulvio Babich

Laureando: Mouhammad Issa

Correlatore:

Dott. Massimiliano Comisso

Dott. Aljosa Dorni



## **Motivazione**

#### Obiettivo:

Studio dell'impatto delle antenne switched-beam e flat-topped in reti di sensori wireless.

#### • Realizzazione:

Estensione del simulatore ibrido NS-2 Matlab.

#### Risultati:

Vantaggi in termini di throughput e trasmissioni simultanee.



## **Sommario**

- Wireless Sensor Network
- Standard IEEE 802.15.4
- Antenne switched-beam e flat-topped
- Simulatore
- Risultati
- Conclusioni e sviluppi futuri



### Wireless Sensor Network

#### Sensori Wireless

- Dispositivi elettronici che misurano grandezze fisiche
- Trasmettono le misure a un sistema di elaborazione

#### Wireless Sensor Network

- Reti composte da sensori wireless
- Per applicazioni:
  - Ambientali
  - Mediche
  - Industriali e domotiche

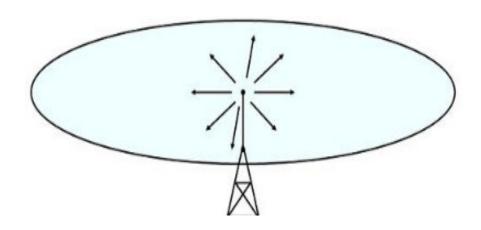


### **IEEE 802.15.4**

- Standard utilizzato in WSN
  - Livello fisico
  - Livello MAC
- Sviluppato per:
  - Basso consumo
  - Basso costo
- Di conseguenza un basso bit rate

Laurea Specialistica in Ingegneria delle Telecomunicazioni

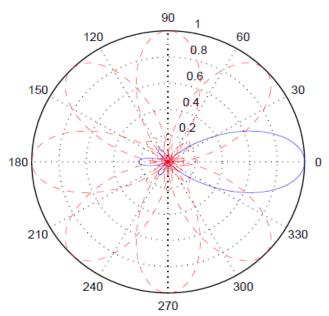


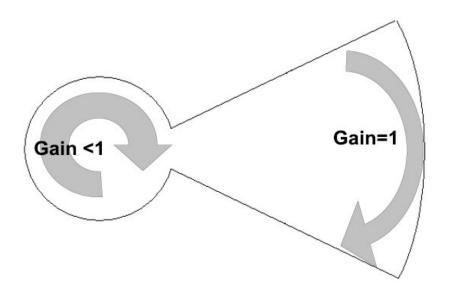

## IEEE 802.15.4 (2)

| Banda di Freq   | Modulazione | Bit Rate |
|-----------------|-------------|----------|
| 868-868.6 MHz   | BPSK        | 20 kbps  |
| 902-928 MHz     | BPSK        | 40 kbps  |
| 2400-2483.5 MHz | O-QPSK      | 250 kbps |



## **Antenne**


- WSN usano antenne omnidirezionali
  - Basso throughput dovuto a:
    - Interferenze e Multipath
    - Non permettono trasmissioni simultanee






## Antenne (2)

- Soluzione proposta:
  - Direzionalità:
    - Switched-beam antenna
    - Flat-topped antenna







## Antenne (3)

#### Antenne switched-beam

- Antenna con diagrammi di radiazione preimpostati
- Coprono 360 gradi
- Viene usato un diagramma in base all'esigenza

### Antenne flat-topped

- Diagramma con guadagno uno in fascio limitato
- Il resto con guadagno medio minore di uno
- Viene ruotato per coprire 360 gradi

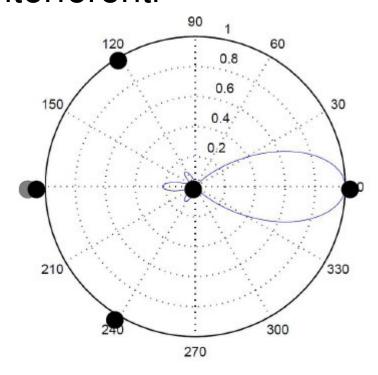




## **Matlab**

- Implementata la funzione GPG che calcola il diagramma di radiazione
  - Simula una schiera circolare di 6 elementi radianti
  - Stima le direzioni di arrivo con algoritmo MUSIC
  - Calcola le eccitazioni della schiera con algoritmo LMS
  - Ritorna il diagramma di radiazione




## Matlab (2)

- MUSIC, MUltiple Signal Classification
  - Tecnica di stima direzione di arrivo
  - Con riferimento spaziale
  - Rumori incorrelati
- Constrained Least Mean Square
  - Massimizza il rapporto segnale rumore interferenza
  - Stima i pesi da applicare su elementi schiera

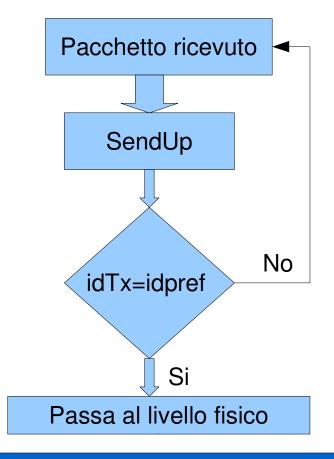


## Matlab (3)

- Calcolo del diagramma di radiazione di base
  - Utilizzati 6 nodi in posizioni diverse
  - 4 nodi interferenti






### Realizzazione

- Utilizzato il simulatore di rete NS-2
  - Creata una classe in C++ per simulare le antenne
  - Interfaccia Matlab NS-2 per calcolare il diagramma di radiazione
- Simulazioni in diverse topologie di rete
  - Confronto nel caso di:
    - Antenna switched-beam
    - Antenna flat-topped
    - Antenna omnidirezionale



### **Simulatore**

- Modifiche sul codice sorgente del simulatore
  - Nodi ricevono solo dal nodo preferito





## Simulatore (2)

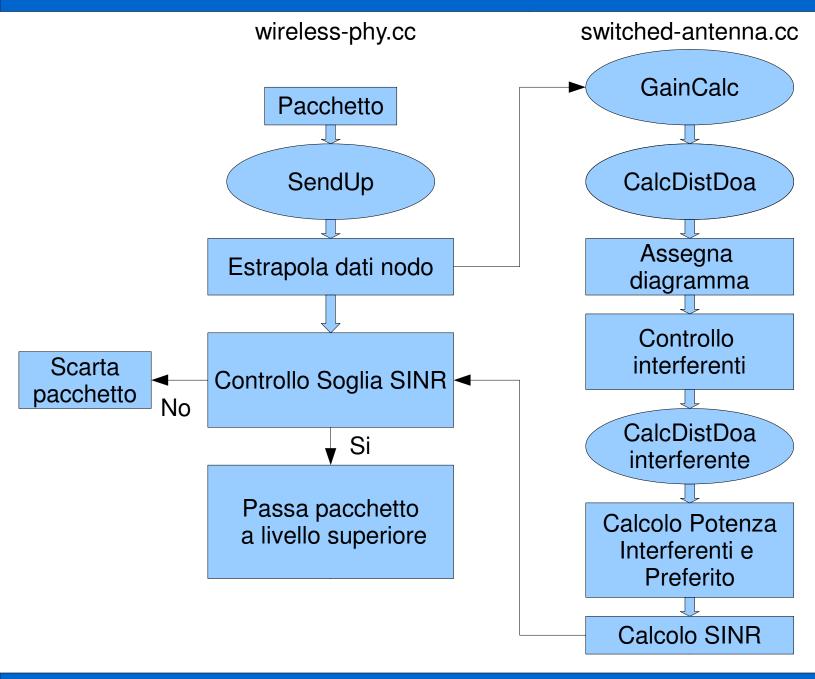
- Estrapolato tempo di trasmissione
- Aggiunta possibilità di ottenere l'id del nodo trasmettitore
- Aggiunta possibilità di ottenere le coordinate nodo trasmettitore
- Aggiunto controllo del SINR



Garantire perdita pacchetti < 1%</p>

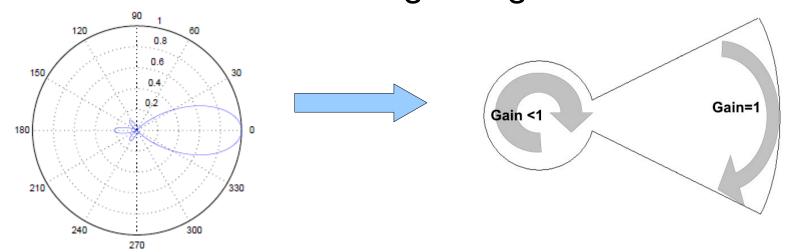
## Simulatore (3)

- La classe SwitchedAntenna
  - Usata da ogni nodo in ricezione
  - Contiene:
    - Id nodo preferito
    - Coordinate del nodo
    - Numero elementi schiera
    - Numero nodi nella simulazione
  - Controlla le coordinate in caso di mobilità
  - Chiama GPG in Matlab per il diag. di radiazione
  - Ruota il diagramma di radiazione in altre posizioni




## Simulatore (4)

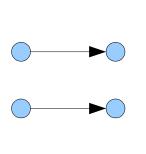
- Contiene diverse funzioni
  - GainCalc:
    - Assegna diagramma di radiazione
    - Calcola il guadagno
    - Calcola e ritorna il valore di SINR.
  - CalcDistDoa:
    - Calcola distanza dal nodo trasmettitore
    - Calcola direzione di arrivo nodo trasmettitore
  - GetRxGain:
    - Ritorna il guadagno calcolato

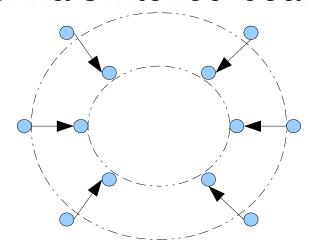

Laurea Specialistica in Ingegneria delle Telecomunicazioni

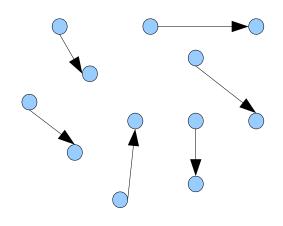




## Simulatore (5)


- La classe FlatToppedAntenna
  - Stesse procedure di prima
  - Calcolo del lobo a 3 dB
    - Modificato il diagramma calcolato da GPG
      - Calcolo angolo con guadagno <1/2 (3dB)</li>
      - Guadagno fascio messo a uno
      - Altre direzioni con guadagno calcolato medio




## **Scenario**

- Simulati tre scenari:
  - Ciascuno con:
    - Antenna omnidirezionale
    - Antenna flat-topped
    - Antenna switched-beam

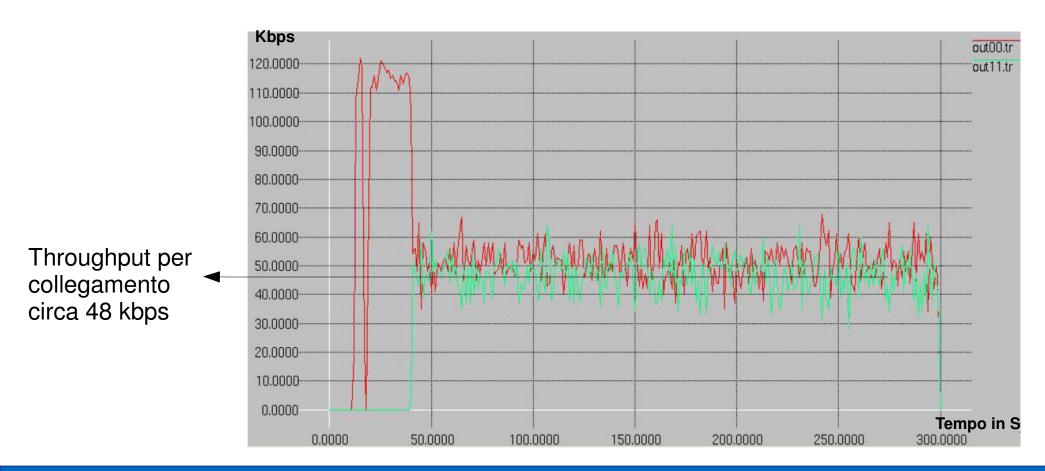






Senario 1 collegamenti paralleli

Senario 2 collegamenti in cerchi concentrici

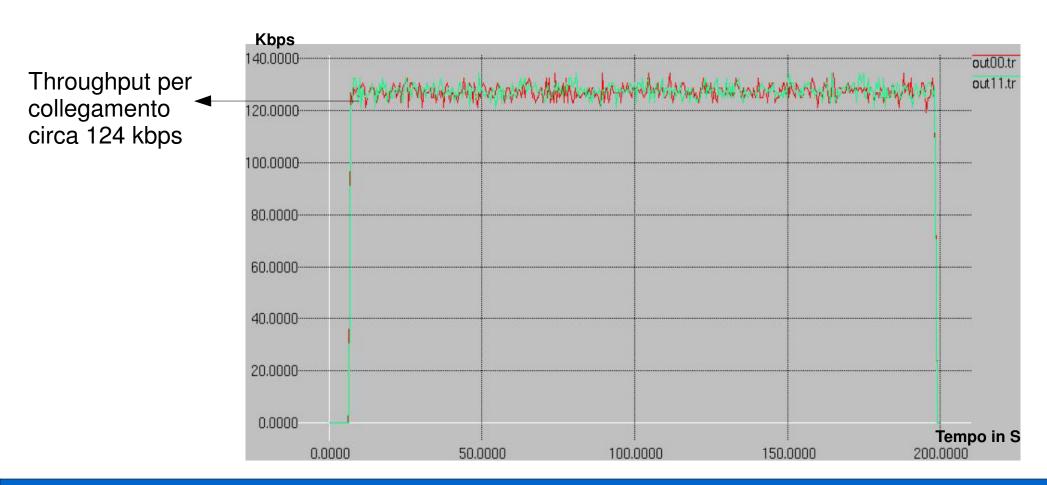

Scenario 3
Collegamenti casuali

Laurea Specialistica in Ingegneria delle Telecomunicazioni



## Nodi in due collegamenti paralleli con antenna omnidirezionale

Throughput aggregato 96 kbps

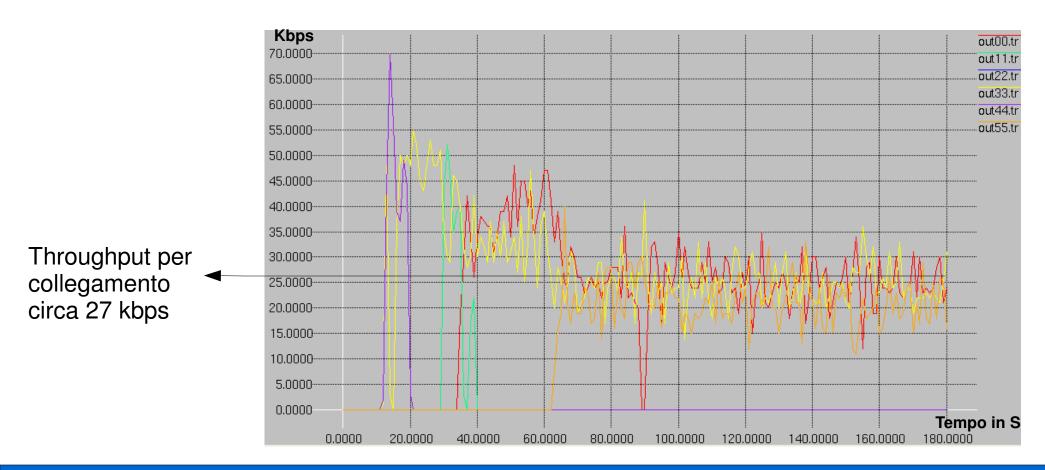



Laurea Specialistica in Ingegneria delle Telecomunicazioni



### Nodi in due collegamenti paralleli con antenna switched-beam

Throughput aggregato 248 kbps

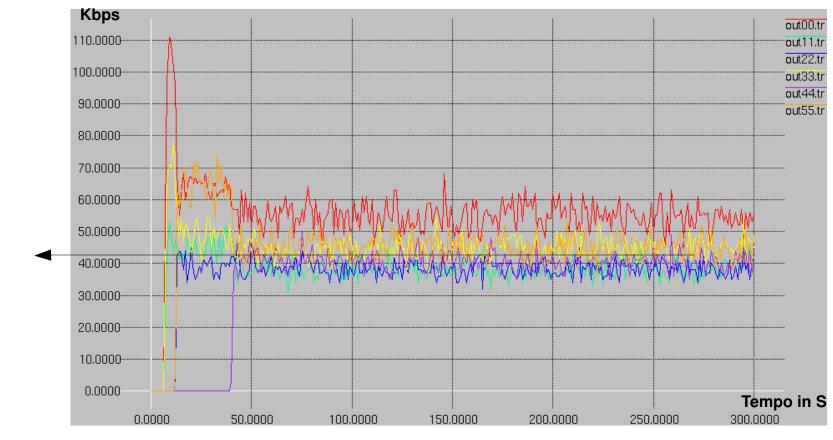



Laurea Specialistica in Ingegneria delle Telecomunicazioni



### Nodi in cerchi con antenna omnidirezionale

Throughput aggregato 80kbps




Laurea Specialistica in Ingegneria delle Telecomunicazioni



### Nodi in cerchi con antenna switched-beam

- Throughput aggregato 240kbps
- Comunicazioni simultanee



Throughput per collegamento circa 40 kbps



### Risultati

• Risultati in termini di throughput aggregato:

|                       | Omnidirezionale | Flat-Topped | Switched-Beam |
|-----------------------|-----------------|-------------|---------------|
| Due<br>Collegamenti   | 96 kbps         | 130 kbps    | 248 kbps      |
| Cerchi<br>concentrici | 80 kbps         | 180 kbps    | 240 kbps      |
| Posizioni<br>casuali  | 115 kbps        | 205 kbps    | 231 kbps      |



## Conclusioni

- Sviluppata estensione NS-2
- Introdotta direzionalità in ricezione
- Utilizzate antenne switched-beam e flat-topped
- Vantaggi della direzionalità
  - Comunicazioni simultanee tra i nodi
    - Aumento del throughput



## Sviluppi Futuri

- Utilizzo della nuova classe sia in trasmissione che in ricezione
  - Modifiche al livello MAC
- Valutazione dell'impatto sui consumi utilizzando direttività
- Utilizzo di tecniche di codifica di canale