L&PS — Logic and Philosophy of Science
Vol. IX, No. 1, 2011, pp. 569-577

Software Verification and Scientific
Methodology: Models, Regularities, Abstractions

Nicola Angius
Dipartimento di Storia, Scienze dell’Uomo e della Formazione
Universita degli Studi di Sassari
e-mail: nangius@uniss.it

1. Software verification in computer science
2. Model checking and scientific method
3. Towards a scientific paradigm in computer science

ABSTRACT. Essential traits of model checking, a prominent formal
method utilized in computer science to predict future behaviours of
software systems, are examined here in the framework of the model-
based paradigm of scientific reasoning. Models that model checking
techniques enable one to develop are shown to satisfy logical re-
quirements expressed by the set-theoretic view of scientific models.
It is highlighted how model checking algorithms are able to isolate
law-like generalizations holding in the model under given ceteris
paribus conditions and concerning software executions. Further-
more, abstraction methodologies utilized in model checking to de-
crease the state space of complex models are taken to be instantia-
tions of the general process known as Aristotelian abstraction char-
acterizing empirical modelling. Finally, the methodological interest
of the model-checking techniques is emphasized in connection with
the debate concerning the epistemological status of computer sci-
ence.

1. Software verification in computer science

Software verification methodologies developed in theoretical computer sci-
ence are formal tools by means of which software code is statically examined

© The Author 2011.
Published by L&PS — Logic and Philosophy of Science
http://www2.units.it/ ~episteme — ISSN: 1826-1043

ANGIUS NICOLA

in order to determine whether it satisfies specific requirements. Model check-
ing (Baier and Katoen 2008) is a model-based formal method enabling to ad-
vance hypotheses concerning future behaviours of software and hardware sys-
tems. Preliminary, one builds a system specification, in the form of a transi-
tion system and representing some target computational system capable of in-
teracting with the environment (called a reactive system). A property specifi-
cation, articulating a property that one would like the target system to fulfil, is
subsequently formalized with an appropriate temporal logic, either a linear
time logic (LTL) or a computation tree logic (CTL). Finally, the model check-
er algorithm checks whether the temporal logic formula holds in the model of
the system. Essential traits of model checking are here examined in the con-
text of the general philosophy of science views about models, law-like state-
ments and abstractions of empirical systems. It is maintained that system
specifications are akin to empirical models that act as surrogates of the target
software system with the aim of testing a set of hypotheses concerning the
program’s behaviours. This claim is supported on the basis of an examination
of the structure and uses of the computational models used in model checking
in relation with the structure and uses of empirical models in scientific prac-
tice. Furthermore, property specifications positively verified by means of
model checking algorithms are acknowledged as regularities which, accord-
ing to the formal model, predict and explain future behaviours of the target
system.

Runtimes of the verification algorithm are determined by the number of
states of the transition system, the state space being too large may constitute a
limitation for a state-space search. This problem, known as state explosion
problem, suggests that simplified models be used to perform the algorithmic
verification when highly structured software systems® are involved. Data ab-
straction, the practice of removing negligible information in a transition sys-
tem in order to reduce its state space, is here examined as an abstraction of
Aristotelian type by means of which one is able to build minimal models of
complex software systems.

Accordingly, the conjectural knowledge of computer programs and hard-
ware systems that model checking enables one to attain involves the deploy-
ment of methodologies which, in their essential features, are on a par with tra-
ditional methodologies one deploys in physics and other natural sciences for
predictive and explanatory purposes.

! That is, most non-trivial systems.

570

SOFTWARE VERIFICATION AND SCIENTIFIC METHODOLOGY: MODELS,
REGULARITIES, ABSTRACTIONS

Let us initially focus on system specifications given, in model checking, by
a Kripke structure and examine under which respects a Kripke structure can
be understood as a scientific model.

2. Model checking and scientific method

A Kripke structure (from now on KS) is a labelled transition system given by
the four-tuple M = (S, Sy, R, L) where S is a finite set of states, S € S is a set
of initial states, R € S x S is a transition relation which must be total, that is,
Vs € S, As' € S such that R(s, s) and L: S — 2" is a function that labels each
state in S with a set of atomic propositions (subsets of AP) that are true in that
state. A path of a KS is an infinite sequence of states @ = sq, S1, Sz... such that
Sq € Sp and R(s;, Si+1) holds for all i > 0 (Clarke et al 1999, p. 14). Fig. 1 shows
a simple KS M for a traffic light controller.? In this example, S = {so, S1, $2};
initial state s, is the unique element of Sy pointed by an incoming arrow; tran-
sition relations are depicted by arrows from state to state and are given by
R(so, 1), R(s1, S2), and R(s,, s1). Atomic propositions set AP is given by the set
AP = {Green, Yellow, Red} and each state in S of the KS is labelled by a sin-
gle element of this set (abbreviated in the picture by “G”, “Y”, and “R”).

Fig. 1: KS M for a traffic light controller.

Let us now turn to examine the nature of models developed in model checking
in the framework of the ontological status of scientific models in general. The

2 The example of the traffic light controller used throughout this paper is taken from Clarke
etal (1999), Ch. 13.

571

ANGIUS NICOLA

word "model" refers, in scientific practice, to entities of different nature, such
as physical objects, sets of descriptions, sets of equations, or a combination of
them. A conception of models advanced by Patrick Suppes (1960), who aims
to account for all uses of the word "model™ in scientific practice, identifies
models with special set-theoretic structures. According to Suppes, the mean-
ing of the word "model" is unique in all fields of science, while the differ-
ences that exist between areas such as physics, social sciences or economet-
rics, concern the way they are used in scientific research. Suppes acquires the
notion of set-theoretic model from mathematical logic, as a non-empty set of
objects and a non-empty set of relations and operations between objects.
Suppes exemplifies this notion of scientific model by reference to a classical
particle mechanics model F = (P, T, s, m, f), where P is a set of particles, T is
an interval of real numbers corresponding to elapsed times, s is a function
from the Cartesian product P X T of particles in P and time intervals T to po-
sitions of particles, m is a mass function defined on the set of particles, and f is
a force function defined againon P X T.

A Kripke structure M for a reactive system is a model in the sense under-
stood by Suppes since, as we noted above, it is a set-theoretic structure M =
(S, So, R, L), which includes a set of objects (states) S (with designated subset
Sp), a relation R between these objects describing trajectories in a state-space,
and a functional relation L on states identifying properties of those objects.
Accordingly, computational models one builds in model checking conform to
the set-theoretic analysis of scientific models advanced by Suppes.®

Suppose now one is interested in assuring that the traffic light would even-
tually stop vehicles in a crossroad; this simple property may be formalized in
CTL as AF Red, which means that, for every paths (A) starting at some initial
state, there will finally (F) be a state where Red holds. The model checking
algorithm determines the set of states in S that satisfy the property specifica-
tion f: {s €S| M, s = f}. In the present example the algorithm will end by stat-
ing that M = AF Red, that is, by saying that structure M satisfies the formula.
Universally quantified temporal logic formulas (obtained using path quantifier
A) that have been positively checked by the model checking procedure ex-
press regularities concerning the model executions (and the target system be-
haviours, provided that the model is an accurate representation of the involved
system) (see Angius and Tamburrini 2011). This stems from the fact that the

® Angius and Tamburrini (2011) contains a comprehensive analysis about the ontology of
models in model checking, the semantic relations of such models with the represented software
systems, and the surrogative reasoning provided by KSs and enabling to draw law-like hypoth-
eses.

572

SOFTWARE VERIFICATION AND SCIENTIFIC METHODOLOGY: MODELS,
REGULARITIES, ABSTRACTIONS

algorithm checks whether the involved property holds in all computational
paths starting at some initial state. For example, the statement AF Red, hold-
ing in the traffic light controller KS, asserts that for every computational path
in the model there will be a state wherein Red holds true and therefore that the
traffic light will always eventually turn red.

KSs (and consequently their target systems) are often required to satisfy
specific ceteris paribus conditions to make law-like statements of this kind
hold for every computational path. In model checking, fairness constraints
force KS’s behaviours such that specified unfair behaviours be not travelled
during computation (Baier and Katoen 2008, pp. 129-139). Unfair behaviours
usually express a malfunctioning due to a hardware fault. In the traffic light
controller of Fig. 1 a fairness constraint may require, for instance, that a never
ending self-loop on state 1 will not ever occur. A deadlock of this kind might
be caused by a damage in the internal circuit of the traffic light. However, the
model checking of the traffic light controller is involved in the verification of
the software rather than in the verification of the final implemented system.
Failures caused by hardware errors are of no interest at this stage of verifica-
tion.

A fair KS is a 5-tuple M = (S, Sg, R, L, F) where F < 2% is a set of fairness
constraints, given by a set of states which must be visited in a fair path
(Clarke et al 1999, p. 33). Suppose now a piece of software actually satisfies
the required property, the model checking algorithm might yield a negative
response if unfair paths are allowed. Fairness constraints formalize the as-
sumption that the involved computational system works properly and that no
errors, due to hardware implementation, occur. Accordingly, in order to check
whether a property specification expresses a regularity concerning all reactive
system’s behaviours one has to assume ceteris paribus conditions of stability
pertaining the involved computational system.

A further difficulty dealing with the formal verification of program speci-
fications comes from the state explosion problem. Except for very simple pro-
grams, KSs are too complex to be handled by the model checking algorithm
with available computational resources. In most cases, abstract models are
used instead. In the context of complex empirical system modelling, a mini-
mal model is a model wherein all details not useful to study the phenomenon
of interest are not included (Batterman 2001). Abstract structures used in
model checking, on the other hand, encompass only data that are necessary to
check the interested temporal formulas with available computational re-
sources. Phenomena to be studied are here executions of the target software
system. Let us see.

573

ANGIUS NICOLA

In data abstraction one specifies a subset A of the system’s data set D by
establishing a function h mapping from actual data values to a small set of ab-
stract data values. This function is determined with respect to those variables
that are involved in the temporal specification one is involved to check. The
KS M for a traffic light controller illustrated in figure 1 has one single varia-
ble, colour, which ranges over domain D = {red, yellow, green}. Set AP is
given by equations colour = green, colour = red and colour = yellow with
which states of M are labelled (using in the picture abbreviations G, Y, and
R). Suppose now one aims at simplifying structure M to check property AF
Red and defines an abstract domain A = {stop, go} and a function h such that:

stop ifd=red
heotour(d) = 4 stop if d = yellow
go if d = green

Abstract domain A determines an abstract set of atomic proposition
AP° = {colour® = stop; colour® = go}; AP° induces the KS M* depicted in
figure 2 below.

Stop Stop

S, Sy

Fig. 2: KS M* for a traffic light controller

One can, at this point, merge together those states that have the same label,
namely those states labelled with equation colour® = stop , thus obtaining the
abstract structure M° illustrated in figure 3 (Clarke et al. 1999, pp. 195-199).
The minimal model approach, also known as Aristotelian abstraction
(Frigg and Hartmann 2006), is defined by Nancy Cartwright (1994) as an op-

574

SOFTWARE VERIFICATION AND SCIENTIFIC METHODOLOGY: MODELS,
REGULARITIES, ABSTRACTIONS

eration by means of which one “strip[s] away — in one’s imagination — all that
is irrelevant to the concerns of the moment in order to focus on a single prop-
erty or set of properties as if they were separate” (p.187). A typical Aristoteli-
an abstraction is given by the classical mechanics model of the planetary sys-
tem, wherein planets are taken to be objects only having shape and mass, re-
gardless of their other properties. In model checking, abstract structure M°
represents a traffic light controller as having only the function of letting vehi-
cles and pedestrians either go or stop. These functions are considered as sepa-
rate in the model with the aim of focusing on property AF Red.

Fig. 3: An abstract KS M for a traffic light controller

Let us conclude this note on model checking by drawing some conclusions
upon the “Philosophy of Computer Science” and concerning the epistemolog-
ical status of the discipline.

3. Towards a scientific paradigm in computer science

The Philosophy of Computer Science (PCS) is characterized by ontological
and epistemological reflections concerning computational systems and meth-
odologies involved in the examination of such systems (Turner and Eden
2008). The practice of building abstract empirical models representing reac-
tive software systems and of drawing regularities concerning the program’s
behaviours has been here highlighted as a trait of epistemological interest in
model checking. Predictions and explanations concerning computational sys-

575

ANGIUS NICOLA

tems are accomplished according to a set-theoretic model, exemplifying, in
the computer science domain, the so-called model-based approach which typ-
ifies scientific reasoning dealing with complex empirical systems (Magnani,
Nersessian and Thagard 1999).

Positively verified regularities are, in model checking, model based hy-
potheses that still need to be tested by observing actual software executions.
In software testing, empirical hypotheses of this kind can be falsified by let-
ting the target system run from some initial state and for a specified interval of
time At, observing executions during At, and comparing resulting outputs with
expected outputs given by the property specification (Ammann and Offutt
2008).

An additional purpose of PCS is shedding light upon the debate about the
epistemological status of computer science. Eden (2007) distinguishes three
epistemological paradigms in PCS: a mathematical paradigm understands
computer science as a branch of mathematics, that is, as a deductive, a priori
knowledge about programs that proceeds by means of some proof; a “techno-
cratic paradigm”, promulgated by software engineers, takes computer science
to be an a posteriori and probabilistic inquiry about programs; and a scientific
paradigm which places computer science on a par with empirical sciences,
pursuing both deductive and inductive reasoning about programs. Introducing
formal models for software systems, advancing hypotheses concerning the
program’s future behaviours that are proved to hold in the model, and subse-
quently testing those hypotheses by observing actual program executions
place the study of computational systems under a scientific paradigm accord-
ing to which both deductive and inductive reasoning are involved.

RIFERIMENTI BIBLIOGRAFICI

Ammann, P. and Offutt, J. (2008): Introduction to Software Testing, Cambridge:
Cambridge University Press.

Angius, N. and Tamburrini, G. (2011): “Scientific Theories of Computational
Systems in Model Checking”, Minds and Machines, 21, pp. 323-336.

Baier, C. and Katoen, J. P. (2008): Principles of Model Checking, Cambridge,
MA: The MIT Press.

Batterman, R. W. (2002),: “Asymptotics and the Role of Minimal Models”, Brit-
ish Journal for the Philosophy of Science, 53, pp. 21-38.

Cartwright, N. (1994): Nature’s Capacities and Their Measurement, Oxford: Ox-
ford University Press.

576

SOFTWARE VERIFICATION AND SCIENTIFIC METHODOLOGY: MODELS,
REGULARITIES, ABSTRACTIONS

Clarke, E. M., Grumberg, O. and Peled D. A. (1999): Model Checking, Cam-
bridge, MA: The MIT Press.

Eden, H. A. (2007): “Three Paradigms of Computer Science”, Minds & Ma-
chines, 17, pp. 135-167.

Frigg, R. and Hartman, S. (2006): “Models in science”, Stanford Encyclopedia of
Philosophy, available at http://plato.stanford.edu/entries/models-science/.

Magnani, L. , Nersessian, N. and Thagard, P. (1999): Model Based Reasoning in
Scientific Discovery, Dordrecht: Kluwer.

Suppes, P. (1960): “A Comparison of the Meaning and Uses of Models in Math-
ematics and the Empirical Sciences”, Synthése, 12, pp. 287-301.

Turner, R. and Eden, A. (2008), “The Philosophy of Computer Science”, Stanford
Encyclopedia of Philosophy, available at
http://plato.stanford.edu/entries/computer-science/

S77

http://plato.stanford.edu/entries/models-science/
http://plato.stanford.edu/entries/computer-science/

