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ABSTRACT. This paper studies many-valued logic endowed with two dif-
ferent kinds of implications: Łukasiewicz implication and Gödel implica-
tion. This research focuses on the class of algebras containing the alge-
braic counterpart of this new logic: the class of Heyting Wajsberg alge-
bras. We prove that this variety is a discriminator variety. We show Gödel
Łukasiewicz Logic to be regularly algebraizable, strongly complete, de-
cidable and to have the Deduction-Detachment Theorem.
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Introduction

Many valued logic arose by the study of Jan Łukasiewicz who first, in the early
twenties of the last century, understood the importance of employing an infinite
set of truth values in the semantics of a deductive system. Once interpreted this
set of values as the unit interval of real numbers, he proposed the following
interpretation for the implicational connective:

x→L y :=
{

1 if x≤ y
1− x+ y otherwise
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Later C. C. Chang [14] in order to prove the completeness of the axioms of Łu-
kasiewicz ℵ0-valued propositional calculus proved the Lindenbaum-Tarski al-
gebra of this deductive system to be an MV-algebra. Many other interpretations
of the implicational connective have been introduced in the scientific literature.

After Lotfi-A. Zadeh conceived fuzzy set theory [25] a renewed interest
pushed philosophers and mathematicians to investigate the possible ways to en-
large the previous studies in many valued logic. A long debate on which con-
nective is the most appropriate to interpreter intersection in fuzzy sets took place
during several years and then the scientific community seemed to agree to define
the intersection operator (and its dual union) in an axiomatic way as a class: the
set of triangular norms (and its dual conorms) [26]. A triangular norm is any
continuous function t : [0,1]2 7→ [0,1] that satisfies the following four proper-
ties: it has to be commutative, associative, monotonic and to have 1 as neutral
element. Moreover by the residuation law x∧ y≤ z⇔ x≤ y→ z any triangular
norm is associated to an implication (i.e. its residuum). The class of the tri-
angular norms is a range of functions limited at the top by the minimum (i.e.
the maximal triangular norm) and at the bottom by the Łukasiewicz triangular
norm tL (i.e. the minimal triangular norm) defined for any x,y ∈ [0,1], xtLy :=
min{0,x+ y− 1}. The residuation law connects Łukasiewicz triangular norm
with Łukasiewicz implication and minimum with the following implicational
connective:

x→G y :=
{

1 if x≤ y
y otherwise

This implication has been introduced by Kurt Gödel in [18] and then is usu-
ally known as Gödel implication. Hence, Gödel implication and Łukasiewicz
implication are the two residua delimiting the whole range of triangular norms.
For this reason we want to study many-valued logic endowed with these two
different implications as primitive operators.

1. The logical system

Let Λ :=<→G,→L,0 > be a language of type < 2,2,0 >. Gödel Łukasiewicz
Logic, in symbols GLL :=< Λ,`GLL> is the deductive system presented by
the following collection of axioms (Ax1-8) and inference rule (MP1). First we
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recall, for the sake of readability, the non-primitive connectives definitions:

¬α := α →L 0
∼ α := α →G 0

α ∧β := ¬((¬α →L ¬β )→L ¬β )
α ∨β := (β →L α)→L α = ¬(¬α ∧¬β )

α ↔ β := (α →L β )∧ (β →L α)

(Ax1) α →G α

(Ax2) (α →G (β ∧ γ))↔ ((α →G γ)∧ (β →G γ))
(Ax3) (α ∧ (α →G β ))↔ (α ∧β )
(Ax4) ((α ∨β )→G γ)↔ ((α →G γ)∧ (β →G γ))
(Ax5) ((α →G α)→L α)↔ α

(Ax6) (α →L (β →L γ))↔ (¬(α →L γ)→L ¬β )
(Ax7) ¬ ∼ α →L∼∼ α

(Ax8) (α →G β )→L (α →L β )

(MP1) α,α→Lβ

β

Definition 1.1. MP2 :=α,α→Gβ

β
.

Lemma 1.1. MP1 ⇒ MP2.

Proof. By (Ax8) and two applications of MP1.

Definition 1.2. Let us consider the set of well formed formulas of GLL defined
by induction in the traditional way, in symbols Fm(Λ). An evaluation on Fm(Λ)
is a mapping e : Fm(Λ) 7→ [0,1] such that:

e(α →L β ) = min{1,1− e(α)+ e(β )}

e(α →G β ) =

{
1 if e(α)≤ e(β )
e(β ) otherwise

Definition 1.3. A formula υ ∈ Fm(Λ) is a 1-tautology iff e(υ) = 1 for any
evaluation e.
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2. Basic algebraic notions

Heyting algebras are the algebraic conterpart (i.e. the class of algebraic struc-
tures which verify exactly the provable formulae) of intuitionistic propositional
logic (pp. 380-383 [15]). In the same way Wajsberg algebras are the algebraic
counterpart of the ℵ0-valued Łukasiewicz propositional calculus and Wajsberg
algebras are termwise definitionally equivalent to MV-algebras [13].

The class of Heyting Wajsberg algebras has been first introduced by Gi-
ampiero Cattaneo and Davide Ciucci [9]. They explained that by the compo-
sition of the two primitive operators with the 0-element it is possible to define
the modal-like operators of necessity and possibility (and their duals). More-
over the pairs of these unary operators generate rough approximation spaces of
Boolean elements and Heyting Wajsberg algebras define an abstract enviroment
linking fuzzy and rough sets.

In the sequel we are going to show that the set of 1-tautologies of Gödel
Łukasiewicz logic (i.e. the logic whose the algebraic equivalent semantics is
the class of Heyting Wajsberg algebras) contains both the one of intuitionistic
propositional logic and the one of Łukasiewicz many valued propositional logic.
In order to do that we will prove that the same relationships among the corre-
sponding equational theories hold. First we have to report some well known
definitions.

Definition 2.1. A Heyting algebra is a structure A = 〈A,∧,∨,→,0〉 of type
〈2,2,2,0〉 in which the following axioms are satisfied:
(H1) x→ x = y→ y
(H2) (x→ y)∧ y = y
(H3) x→ (y∧ z) = (x→ z)∧ (x→ y)
(H4) x∧ (x→ y) = x∧ y
(H5) (x∨ y)→ z = (x→ z)∧ (y→ z)
(H6) 0∧ x = 0

In [23] it is proved that Heyting algebras are equivalent to residuated lattices
where the multiplication operator coincides with the lattice meet operator, i.e.,
∀x,y ∈ A : x∧y = x∗y. Moreover the unary operator ∼ x := x→ 0 is a Brouwer
negation, i.e., it satisfies the three following properties:
(B1) x≤∼∼ x
(B2) ∼ (x∨ y) =∼ x∧ ∼ y
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(B3) x∧ ∼ x = 0

Definition 2.2. A Wajsberg algebra is a structure A = 〈A,→,¬,1〉 of type
〈2,1,0〉 in which the following axioms are satisfied:

(W1) 1→ x = x
(W2) (x→ y)→ ((y→ z)→ (x→ z)) = 1
(W3) (x→ y)→ y = (y→ x)→ x
(W4) (¬x→¬y)→ (y→ x) = 1

Let us remark that in any Wajsberg algebra it is possible to define an order
relation as

a≤ b iff a→ b = 1

With respect to this order relation, 1 is the maximum element and 0 := ¬1 the
minimum element and once defined the meet and join operators in the usual
way: x≤ y iff x∧ y = x iff x∨ y = y, the structure 〈A,∧,∨,0,1〉 is a distributive
lattice.

Definition 2.3. An MV-algebra is a structure A = 〈A,⊕,¬,0〉 of type 〈2,1,0〉
such that, upon defining for any x,y ∈ A : x∨ y := ¬(¬x⊕ y)⊕ y, the following
conditions are required:

(MV1) (x⊕ y)⊕ z = (y⊕ z)⊕ x
(MV2) x⊕0 = x
(MV3) x⊕¬0= ¬0
(MV4) x∨ y = y∨ x
(MV5) ¬¬x = x

It is useful to define also the dual concepts: 1 := ¬0, x� y := ¬(¬x⊕¬y),
and x∧ y := ¬(¬x� y)� y. We observe that the relation x ≤ y⇔ x∨ y = y
induces in every MV-algebra a distributive lattice order. In what follows we
denote by A[0,1] the standard MV-algebra whose support is the unit real interval
and by A[0,1]∩Q the algebra whose support is the unit rational interval. Notice
that in both these algebras for any x,y in their support, ¬x := 1− x, x⊕ y :=
min{1,x+ y} and 0 := 0.

Definition 2.4. An MV-algebra A is a Stonean MV-algebra if and only if for
any x ∈ A, there exists a Boolean (i.e. idempotent) element z such that z =

∨
{y |

y∧ x = 0}. This property is equivalent to the possibility to define a Stonean
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negation ∼, for any x ∈ A,∼ x := z. Moreover a Stonean MV-algebra is an
algebra A = 〈A,⊕,¬,∼,0〉 of type 〈2,1,1,0〉.

Definition 2.5. Let A = 〈A,→L,→G,0〉 be an algebraic structure of type 〈2,2,0〉.
A is a Heyting Wajsberg algebra if for any x,y,z ∈ A, once defined

¬x := x→L 0
∼ x := x→G 0

x∧ y := ¬((¬x→L ¬y)→L ¬y)
x∨ y := (x→L y)→L y

1 := ¬0

the following identities are satisfied:

(HW1) x→G x = 1
(HW2) x→G (y∧ z) = (x→G z)∧ (x→G y)
(HW3) x∧ (x→G y) = x∧ y
(HW4) (x∨ y)→G z = (x→G z)∧ (y→G z)
(HW5) 1→L x = x
(HW6) x→L (y→L z) = ¬(x→L z)→L ¬y
(HW7) ¬ ∼ x→L∼∼ x = 1
(HW8) (x→G y)→L (x→L y) = 1

Let us introduce the following conventions:

x⊕ y := ¬x→L y
x� y := ¬(¬x⊕¬y)

Any HW-algebra A = 〈A,→L,→G,0〉 has the MV-algebra A ?= 〈A,⊕,¬,0〉
as term reduct and any HW-algebra A = 〈A,→L,→G,0〉 has the bounded dis-
tributive lattice A ?? = 〈A,∧,∨,0,1〉 as term reduct ([10], [11]).

It is also shown in [11] (proposition 1.1) that the natural partial order ≤
defined by ∧ or ∨ (i.e. x≤ y := x∧y = x or x≤ y := x∨y = y) has the following
property:

(P) x≤ y⇔ x→L y = 1⇔ x→G y = 1

Proposition 2.1. In any linear MV-algebra a Stonean negation can be defined
in a natural way in order to have a Heyting Wajsberg algebra term reduct.
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Proof. By [11] any HW-algebra is termwise definitionally equivalent to a Stone-
an MV-algebra. An MV-algebra is Stonean when there can be defined a Stonean
negation (see also [12]). Any linear MV-algebra is trivially Stonean once de-
fined the Stonean negation ∼0:

∼0 x :=
{0 if x 6= 0

1 if x = 0
Then any linear MV-algebra enriched in such a way has a HW-algebra term
reduct.

A HW-algebra A is linear (or totally ordered) iff for any pair of elements x,y ∈
A, either x≤ y or y≤ x. A linear algebra can be also called for short a chain.

Now we introduce the most important example of Heyting Wajsberg alge-
bra, the model we will prove to generate the whole set of Heyting Wajsberg
algebras as quasi-variety.

Example 2.1 (Standard HW-algebra). The algebra whose support represents the
set of truth-values of GLL is

A[0,1] = 〈[0,1],→L,→G,0〉

where [0,1]⊂ R, and the two binary operators are defined

a→L b := min{1,1−a+b}

x→G y :=
{

1 if x≤ y
y otherwise

Another important example of Heyting Wajsberg algebra in order to study GLL
follows.

Example 2.2 (Lindenbaum-Tarski algebra of GLL). Let the binary relation ≡
on Fm(Λ) be defined by α ≡ β iff `GLL α →L β and `GLL β →L α . Then ≡ is
a congruence relation and the quotient set Fm(Λ)≡ becomes a HW-algebra with
the operation→L,→G and the constant ⊥ defined by

[α]≡→L [β ]≡ := [α →L β ]≡

[α]≡→G [β ]≡ := [α →G β ]≡

⊥:= {γ |`GLL β and (β →L 0)≡ γ}
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The reader can find a self contained proof of the standard completeness of Heyt-
ing Wajsberg algebras in [21]. However this result could be also inferred in an
indirect way by the connection between Heyting Wajsberg algebras and Stonean
MV-algebras [11] because in [20] it is proved that the variety of Stonean MV-
algebras is generated by the model whose support is the unitary real interval (i.e.
the standard Stonean MV-algebra). We report this important result.

Theorem 2.3. HW = HSP(A[0,1]).

In the sequel we will adopt the following notation. Given a HW-algebra A ,
∀x ∈ A and ∀n ∈ N:

nx =


0 if n = 0
x if n = 1
x⊕ . . .⊕ x︸ ︷︷ ︸

n−times

, if 2≤ n ∈ N

and

xn =


1 if n = 0
x if n = 1
x� . . .� x︸ ︷︷ ︸

n−times

, if 2≤ n ∈ N

We recall below an important basic result that will be useful in the sequel.

Lemma 2.1. Let A =〈A,→,¬,0〉 be a Wajsberg algebra. Then for any x,y,x∈ A
the following properties hold:

1. x→ (y→ z) = y→ (x→ z)
2. x→ y = ¬y→¬x

Proof. See Lemma 4.2.3 and Lemma 4.2.4 in [13].

In the next lemma and corollary Heyting, Wajberg and Heyting Wajsberg alge-
bras are dealt in signatures that are not the shortest (i.e. with the smallest number
of symbols) in which they had been defined previously but these signatures are
however their extensions. This can be found often in the algebraic literature and
we decide to adopt it for the sake of a clear wide comprehension. We advise the
reader to consult also Lemma 16 in [16] because of its strict connection with the
following lemma.
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Lemma 2.2. An algebra A = 〈A,∧,∨,→L,¬,→G,∼,0,1〉 of type 〈2,2,2,1,2,
1,0,0〉 has a Heyting Wajsberg term reduct if and only if the following condi-
tions are satisfied:

1. 〈A,→L,¬,0,1〉 is a Wajsberg algebra.
2. 〈A,∧,∨,→G,∼,0,1〉 is a Heyting algebra.
3. The Wajsberg algebra partial order≤→L (a≤→L b := a→L b = 1) and the

Heyting algebra partial order ≤→G (a≤→G b := a→G b = 1) coincide.

Proof. We prove separately the two implications.
(⇒) For the left-to-right direction, let A be a HW-algebra.

(1) In [11] it is shown that Heyting Wajsberg algebras are termwise def-
initionally equivalent to Stonean MV-algebras that are trivially MV-
algebras. MV-algebras are proved to be termwise definitionally equiv-
alent to Wajsberg algebras [13]. Thus any Heyting Wajsberg algebra
satisfies the axioms of Wajsberg algebras.

(2) We have to prove that the Heyting Wajsberg algebra A satisfies the
axioms (H1)-(H6). (H1) follows easily from (HW1). (H3), (H4) and
(H5) coincide with (HW2), (HW3) and (HW4). Since by Theorem
2.3 we have that HW = HSP(A[0,1]), (H2) can be just verified in A[0,1]
where either x≤ y or y < x and where we remind that→G is defined

x→G y :=
{

1 if x≤ y
y otherwise

Since any Heyting Wajsberg algebra A has a bounded distributive
lattice A ?? term reduct (H6) is satisfied.

(3) This follows from (P).
(⇐) For the right-to-left direction, suppose A satisfies (1)-(3). By (W2), (1→L

1)→L ((1→Lx)→ (1→L x)) = 1 and then by (W1), x→L x = 1→L (x→L

x) = 1. By (P) we have (HW1). It can be easily observed that (HW2),
(HW3), (HW4), (HW5) correspond to (H3), (H4), (H5) and (W1). By
combining the two statements in Lemma 2.1 (HW6) holds in any Wajs-
berg algebra.
One of the basic property in an MV-algebra is that for all x,y ∈ A x� y≤
x∧ y. By (H4)/(HW3) y ≥ x∧ y = x∧ (x→G y) ≥ x� (x→G y). The
Łukasiewicz implication →L is a residuum with respect to �, then by
residuation law we have (x→G y)� x≤ y⇔ (x→G y)→L (x→L y) = 1
that is (HW8).
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We need a remark in order to prove (HW7). Any Wajsberg algebra is
termwise definitionally equivalent to an MV-algebra that is isomorphic to
a subdirect product of a family of linear MV-algebras {Ai | i ∈ I} [14].
Suppose ∼ x = y and that in the subdirect representation each element
z ∈ A, is expressed componentwise z = 〈z1, . . . ,zn, ..〉 where 1≤ n≤ i ∈ I.
We distinguish two cases:
1. By x∧ y = 0 (B3) if xi 6= 0i then yi = 0i.
2. Let xi = 0i.

2.1. Suppose yi 6= 0i. Let us consider the set of element {z j | j ∈ J}
such that for any j ∈ J, x∧ z j = 0 and z j

i 6= 0i. This set is not
empty because y belongs to it.
By (B3) for any j ∈ J, ∼ z j

i = bi = 0i = xi.
By (B1) for any j ∈ J, z j

i ≤∼∼ z j
i =∼ bi =∼ xi = yi and hence yi

has to be the maximal element of {z j
i | j ∈ J}.

Moreover yi has to be⊕-idempotent because otherwise k= 2y> y
and yi < ki ∈ {z j

i | j ∈ J} against maximality. Since a linear MV-
algebra has the only two idempotent elements 0 and 1, yi = 1i.

2.2. yi = 0i.
This means that in any case y is an idempotent element, i.e. ∼ x⊕∼ x =∼
x. By a well known MV-property (Theorem 1.5.3 in [13]) if y⊕y = y then
¬y∧ y = 0 and then we obtain ∼ x∧¬ ∼ x≤ 0 that by residuation law is
equivalent to ¬ ∼ x≤∼∼ x. By hypothesis 3. we have (HW7).

Corollary 2.1. Heyting-Wajsberg algebras are axiomatized in the signature 〈∧,
∨,→L,¬,→G,∼,0,1〉 by:

1. A set of identities axiomatizing Heyting algebras in the signature 〈∧,∨,
→G,∼,0,1〉.

2. A set of identities axiomatizing Wajsberg algebras in the signature 〈→L

,¬,1〉.
3. The identity x∨ y = (x→L y)→L y.

From the previous lemma we conclude that Heyting Wajsberg algebras satisfy
the following useful identities, which will be needed in the sequel:

x→L x = 1

x→L 1 = 1
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3. Algebraic properties

We recall the fundamental notion of discriminator variety on which a wide lit-
erature exists (see for example [4]).

Definition 3.1. A discriminator term on a set A is a function t : A3 7→ A such
that, for any a,b,c ∈ A:

t(a,b,c) =
{

c if a = b
a otherwise

Definition 3.2. An algebra A is subdirectly irreducible if for every subdirect
embedding f : A 7→ ∏i∈I Ai there is an i ∈ I such that πi ◦ f : A 7→ Ai is an
isomorphism.

Definition 3.3. A variety V is said to be a discriminator variety if there exists a
ternary term t such that t is a discriminator term on each subdirectly irreducible
member of V. A pointed discriminator variety is a discriminator variety with a
constant term.

Now we can state a theorem that opens the path to many important other results:

Theorem 3.1. HW is a discriminator variety.

Proof. Since by Theorem 2.3 HW = HSP(A[0,1]) in order to prove HW to be a
discriminator variety we have just to find a ternary term that is a discriminator
term on the standard HW-algebra A[0,1]. First we define:

τ(a,b) := ¬ ∼ ¬((a→G b)∧ (b→G a))

It can be easily verified that

τ(a,b) =
{

1 if a 6= b
0 otherwise

Let us consider the following ternary term

σ(a,b,c) := (τ(a,b)∧a)∨ (∼ τ(a,b)∧ c)

If a = b, τ(a,b) = 0 and σ(a,b,c) = (0∧a)∨ (1∧ c) = c. If a 6= b, τ(a,b) = 1
and σ(a,b,c) = (1∧ a)∨ (0∧ c) = a. We have proved σ to be a discriminator
term on A[0,1], then on any member of HW and hence HW is a discriminator
variety.
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A different discriminator term for HW-algebras has been provided in [2] but it
has never been published. The property to be a discriminator variety opens the
path to many related algebraic consequences. When such a variety has equa-
tionally definable principal congruences, if it is a variety generated by the real
unit interval model so it is as quasi-variety: quasi-equations satisfied in the pro-
totypical model are satisfied in any member of the variety. This result is known
as strong completeness theorem.

In MV-algebras there is a one-one correspondence between ideals and con-
gruences. To have this relationship in HW-algebras, in [21] a new adequate
definition of filter (the dual concept of ideal) has been introduced. We are going
to recall some basic definitions to introduce the concept of equationally defin-
able principal congruences (i.e.EDPC) in order to prove the strong completeness
theorem for HW-algebras with respect to the standard unit interval HW-algebra.
On EDPC the four works of W.Blok and D.Pigozzi quoted in the references can
give to the reader a deep and exhaustive insight.

Definition 3.4. A variety V is congruence distributive (modular) if and only
if for any A ∈ V, the lattice of congruences (i.e. Con(A)) is a distributive
(modular) lattice.

Definition 3.5. An algebra A has the congruence extension property (CEP) if
for every subalgebra of the same class B and any congruence θ ∈ Con(B) there
is a congruence φ ∈ Con(A) such that θ = φ ∩B2 where B2 is the set of all the
2-tuples of elements from B. A class K of algebras has the CEP if every algebra
in the class has the CEP.

Definition 3.6. Let A be an algebra and a1, . . . ,an ∈ A, let Θ(a1, . . . ,an) be a
congruence generated by {〈ai,a j〉 | 1 ≤ i, j ≤ n}. i.e. the smallest congruence
such that a1, . . . ,an are in the same class. The congruence Θ(a1,a2) is called
principal congruence.

Definition 3.7. A class of algebras K is said to have equationally definable
principal congruences (briefly EDPC) if there exists a finite set of quaternary
terms pi(x,y,z,w), qi(x,y,z,w) of K such that for every algebra A ∈ K and all
a,b,c,d ∈ A,

c≡ d(modΘA(a,b)) if and only if
pA

i (a,b,c,d) = qA
i (a,b,c,d), for i = 1, . . . ,n.
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Block and Pigozzi (Theorem 3.8 in [5]) proved every discriminator variety to
have EDPC. We give an explicit proof for Heyting Wajsberg algebras for the
sake of readability.

Theorem 3.2. The variety of Heyting Wajsberg algebras has EDPC.

Proof. In the previous theorem we have proved HW to be a discriminator vari-
ety. Then for any A ∈ HW there is a discriminator ternary term, such that for
any a,b,c ∈ A:

t(a,b,c) =
{

c if a = b
a otherwise

We can define a couple of quaternary terms p1 and q1:

p1(a,b,c,d) := (d→G d)→G t(a,b,c)

q1(a,b,c,d) := (c→G c)→G t(a,b,d)

Then HW has EDPC.

Corollary 3.1. HW is congruence distributive (and thus congruence modular)
and has the congruence extension property.

Proof. See Theorem 1.2 in [8].

The following theorem is part of the folklore of universal algebra. A clear pre-
sentation of this result can also be found in [1].

Theorem 3.3. Let K be a class of simple algebras such that the variety generated
by K (we denote it V (K)) has EDPC. V (K) coincides with the quasi-variety
generated by K. In symbols, HSP(K) = ISPPu(K).

Theorem 3.4 (Strong completeness). HW = ISPPu(A[0,1]).

Proof. By Theorem 2.3 HW= HSP(A[0,1]) and in Theorem 3.2 it is shown HW
to have EDPC. A[0,1] is trivially simple, then by Theorem 3.3 the standard HW-
algebra generates the quasi-variety HW.

Now we are going to show the finite model property for Heyting Wajsberg alge-
bras. The following lemma and theorems provide the necessary steps.

It is important to remind that, by the classical construction, any real number
can be identified by a sequence of Cauchy of rational numbers. I recall this
definition:

131



MARTINVALDO KONIG

Definition 3.8. A sequence a : n 7→ an (we write {an}) is a Sequence of Cauchy
if and only if ∀ε > 0, ∃v, ∀m,n > v, d(am,an)< ε.

I am going to show that sequences of Cauchy are closed under the sum.

Lemma 3.1. Let a : n 7→ an and b : n 7→ bn two sequences of Cauchy. Then
a+b : n 7→ an +bn is a sequence of Cauchy.

Proof. By definition we have directly that ∀ε > 0,∃v1,∀m,n> v1,d(am,an)<
ε

2
and ∀ε > 0,∃v2,∀m,n > v2,d(bm,bn)<

ε

2 . Then ∀ε > 0,∃vi =max{v1,v2},∀m,
n > vi,d(am +bm,an +bn)≤ d(am,an)+d(bm,bn)< ε .

It can be easily observed that whether a sum is truncated (for instance, ⊕ in
A[0,1]∩Q) the property expressed by the previous lemma is not affected and it
still holds. Moreover {0n} and {1n} are trivially sequences of Cauchy. Then
¬(n : n 7→ an) is {1n} + ((−(n : n 7→ an)) := (n : n 7→ −an)) and sequences of
Cauchy are closed under ⊕ and ¬ componentwise.

The following theorem is part of the MV folklore but an explicit proof can-
not be found in the literature. Then we have decided to prove and present it.

Theorem 3.5. Let A be an MV-algebra, HSP(A[0,1]∩Q) = HSP(A[0,1]).

Proof. Since A[0,1]∩Q is an MV-algebra and MV = HSP(A[0,1]) [13], we have
A[0,1]∩Q ∈ HSP(A[0,1]) and then HSP(A[0,1]∩Q) ⊆ HSP(A[0,1]). On the other
hand HSP(A[0,1]∩Q) is closed under direct products, then an MV-algebra A ω

[0,1]∩Q
whose support is made of infinite copies of A[0,1]∩Q and whose operators are
defined componentwise, belongs to HSP (A[0,1]∩Q). This variety is also closed
under subalgebras. The set of the sequences of Cauchy in [0,1]∩Q endowed
with componentwise-defined truncated sum and involutive negation A

{an}
[0,1]∩Q is

an MV-subalgebra of A ω

[0,1]∩Q. Then A
{an}
[0,1]∩Q ∈ HSP(A[0,1]∩Q). Since real num-

bers are identified by sequences of Cauchy there is trivially a homomorphism
from A

{an}
[0,1]∩Q to A[0,1]. A[0,1] is the quotient of A

{an}
[0,1]∩Q modulo the congruence

R defined by aRb := a and b have the same limit. Thus A[0,1] ∈ HSP(A[0,1]∩Q)
and HSP(A[0,1])⊆ HSP(A[0,1]∩Q). Then HSP(A[0,1]∩Q) = HSP(A[0,1]).

Theorem 3.6. Let A be a Stonean MV-algebra, HSP(A[0,1]∩Q) = HSP(A[0,1]).
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Proof. Since in [20] it is proved the variety of Stonean MV-algebras SMV
= HSP(A[0,1]) we have HSP(A[0,1]∩Q) ⊆ HSP(A[0,1]). We have to prove that
HSP(A[0,1]) ⊆ HSP(A[0,1]∩Q) that is, if A[0,1]∩Q |= t(x1, . . . ,xn) = s(x1, . . . ,xm)
then A[0,1] |= t(x1, . . . ,xn) = s(x1, . . . ,xm). We’ll do it by induction on the num-
ber of occurences of ∼ in t ∪ s (we denote it ∼-occ(t ∪ s)). If ∼-occ(t ∪ s)=
0 then t(x1, . . . ,xn) = s(x1, . . . ,xm) is an MV-equation and by Theorem 3.5, if
A[0,1]∩Q |= t(x1, . . . ,xn)= s(x1, . . . ,xm) then A[0,1] |= t(x1, . . . ,xn)= s(x1, . . . ,xm).
By hypothesis of induction we suppose that this implication holds for each j≤ k
= ∼-occ(t ∪ s). If ∼-occ(t ∪ s)= k+1, for some 1 ≤ i ≤ n, without loss of gen-
erality we have that A[0,1]∩Q |= t(x1, . . . ,xn,∼ t ′(x1, . . . ,xn)) = s(x1, . . . ,xm) and
∼-occ(t ′∪ s)≤ k. Since ∼ in both A[0,1]∩Q and A[0,1] is ∼0 and

∼0 (a) =
{

0 if a 6= 0
1 otherwise

there will be a term t? for which, by induction hypothesis, if A[0,1]∩Q |= t?(x1, . . . ,
xn,0)= s(x1, . . . ,xm) then A[0,1] |= t?(x1, . . . ,xn,0)= s(x1, . . . ,xm) and if A[0,1]∩Q
|= t?(x1, . . . ,xn,1) = s(x1, . . . ,xm) then A[0,1] |= t?(x1, . . . ,xn,1) = s(x1, . . . ,xm).
It follows A[0,1] |= t(x1, . . . ,xn,∼ t ′(x1, . . . ,xn)) = s(x1, . . . ,xm).

An important feature in the interconnection between logic and algebra is the
following: any logical finitely axiomatized propositional calculus is decidable
if its Lindenbaum-Tarski algebra belongs to a variety that has the finite model
property (FMP). We introduce this definition.

Definition 3.9. We say that a variety has the finite model property (FMP) if
every identity that fails to hold in the class can be refuted in a finite member of
the class. Varieties with FMP are said to be generated by their finite members.

Throughout this section, for each n = 1,2,3, ... we shall use the notation:

Z
1

n∩ [0,1]
:= {0, 1

n
,
2
n
, . . . ,

n−1
n

,1}.

Moreover we denote with An+1 the subalgebra of A[0,1]∩Q whose support is
Z 1

n∩[0,1] .

Theorem 3.7. The variety of Stonean MV-algebras (SMV) has FMP.
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Proof. By Theorem 3.6 and since SMV = HSP(A[0,1]) [20], if an equation α :
t = s in the variables x1, . . . ,xn fails in some Stonean MV-algebra A then it
fails in A[0,1]∩Q. Hence for some c1, . . . ,cn ∈ [0,1]∩Q, tA[0,1]∩Q(c1, . . . ,cn) 6=
sA[0,1]∩Q(c1, . . . ,cn). So if c1 ∈ Am+1,c2 ∈ An+1, . . . ,cn ∈ Av+1 and Ai j is the
subalgebra of A[0,1]∩Q whose support is Z 1

m·n·..·v∩[0,1] then tAi j(c1, . . . ,cn) 6= sAi j

(c1, . . . ,cn).

Corollary 3.2. The variety of Heyting Wajsberg algebras (HW) has FMP.

Proof. By Theorem 3.7 and termwise equivalence between Stonean MV-alge-
bras and Heyting Wajsberg algebras.

Theorem 3.8. An algebra A ∈ HW is subdirectly irreducible if and only if it
is a chain.

Proof. We prove separately the two implications.
(⇒) For the left-to-right direction, by definition for every subdirect embedding

f : A 7→∏i∈I Ai there is an i ∈ I such that πi ◦ f : A 7→Ai is an isomor-
phism. Either by the subdirect representation Theorem for HW-algebras
[21] or by the subdirect representation Theorem for Stonean MV-algebras
[20] and termwise equivalence between Stonean MV-algebras and Heyt-
ing Wajsberg algebras for every HW-algebra A there is a subdirect em-
bedding h : A 7→∏i∈I Ai and for every i ∈ I, πi ◦ f : A 7→Ai is an homo-
morphism and each Ai is a chain. Then A is isomorphic to a chain.

(⇐) For the right-to-left direction, suppose A is a chain. By termwise equiv-
alence between Stonean MV-algebras and Heyting Wajsberg algebras,
A is termwise definitionally equivalent to a linear Stonean MV-algebra
A ′. Since by linearity in A ′ we have ∼=∼0, there can be only two
congruences-ideals: {0} and the whole A′, that is to say A ′ is simple and
hence so it is A . By Theorem 8.1(II) in [19], A is simple if and only if
A is subdirectly irreducible.

Lemma 3.2. For each n, 0 6= n∈N, any two n-element Heyting Wajsberg chains
are isomorphic.

Proof. Trivial, by termwise equivalence with MV-chains that are Stonean by
∼0.
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Combining Theorem 3.8 and Lemma 3.2 the following theorem yields:

Theorem 3.9. Up to isomorphism, there is precisely one subdirectly irreducible
HW-algebra for each finite cardinality.

The lattice of subvarieties of most discriminator varieties is totally ordered.
Nevertheless I am going to show this is not the case of Heyting Wajsberg al-
gebras. Let us notice An the HW-algebra (or MV-algebra) of cardinality n.

Theorem 3.10. The lattice of subvarieties of Heyting Wajsberg algebras is not
totally ordered. Moreover for any n, 2 < n ∈ N, HSP(An) 6⊆ HSP(An+1) and
HSP(An+1) 6⊆ HSP(An).

Proof. The lattice of subvarieties of MV-algebras is not totally ordered (see
[17]). In the same book it is shown that in the case of MV-algebras for any cou-
ple of prime natural numbers pi, p j we have that HSP(Api+1) 6⊆ HSP(Ap j+1)
and HSP(Ap j+1) 6⊆ HSP(Api+1). In [22] and [24] it is proved that any finite
MV-algebra is isomorphic to a direct product of a family of linear MV-algebras.
Any direct product of linear MV-algebras is a Stonean MV-algebra by the def-
inition of Stonean negation ∼0 componentwise. Then any finite MV-algebra
is Stonean and termwise definitionally equivalent to a HW-algebra. Since the
Stonean operator can’t be defined as a combination of the MV-operators ⊕
and ¬, the class of theorems of a Stonean MV-algebra is the set-union of the
set of theorems where the Stonean operator occurs and the set of theorems
where it does not occur. These two sets are disjoint. Trivially an equation
in the language of MV-algebras that is not satisfied in an MV-algebra con-
tinues not to be satisfied in the language of Stonean MV-algebra whereas the
MV-algebra is Stonean. It follows that in the lattice of subvarieties of Stonean
MV-algebras HSP(Ap j+1) 6⊆ HSP(Api+1) and HSP(Api+1) 6⊆ HSP(Ap j+1). By
termwise equivalence in the lattice of subvarieties of Heyting Wajsberg algebras
HSP(Api+1) 6⊆ HSP(Ap j+1) and HSP(Ap j+1) 6⊆ HSP(Api+1). For the sake of
completeness we present a pair of equations in order to provide an infinite set
of counterexamples to linearity. We leave to the reader the task to verify that for
any integer n > 1,

An+2 |= (nx)2 = (n−1)x
An+1 6|= (nx)2 = (n−1)x
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and for any integer n≥ 0,

An+1 |= nx = (n+1)x
An+2 6|= nx = (n+1)x

4. Logical results

Theorem 4.1. Let α be a formula of Fm(Λ). Then, `GLL α iff α is a 1-tautology

Proof. We prove separately the two implications.
(⇒) For the left-to-right direction, it can be easily verified that axioms (Ax1)-

(Ax9) are 1-tautologies and that Modus Ponens (MP1), the only deduction
rule of GLL, cannot decrease the evaluation of an inferred formula.

(⇐) For the left-to-right direction, if α is a 1-tautology then the algebraic term
related to α , meant in the natural traditional way (see p.21 in [13]), tα
implies A[0,1] |= tα = 1

By the standard algebraic completeness expressed in Theorem 2.3, if tα = 1 is
satisfied in [0,1] it is satisfied in any model of HW and thus [α]≡ is the top
element of the Lindenbaum Tarski algebra of GLL. Hence `GLL α .

We have thus proved that GLL is the 1-assertional logic of the variety HW, in
Symbols GLL = S(HW,1). Since HW is a 1-regular variety, its 1-assertional
logic is regularly algebraisable with HW as equivalent algebraic semantics. A
system of equivalence formulas is given by {α →L β ,β →L α}.

Let Φ := 〈→L,¬〉 be a language of type 〈2,1〉. ℵ0-valued Łukasiewicz
logic, in symbols Ł := 〈Φ,`Ł〉 is the deductive system presented by the follow-
ing collection of axioms (Ł1-4) and inference rule (MP):
(Ł1) α →L (β →L α)
(Ł2) (α →L β )→L ((β →L γ)→L (α →L γ))
(Ł3) ((α →L β )→L β )→L ((β →L α)→L α)
(Ł4) (¬β →L ¬α)→L (α →L β )

(MP) α,α→Lβ

β

It can be easily observed that the language Φ can be defined into the language
Λ and thus the induced set of formulas Fm(Λ) is an extension of Fm(Φ).
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Theorem 4.2. For any formula ψ in the set of formulas defined by induction on
the traditional way in Φ (i.e.Fm(Φ)):

`Ł ψ ⇒ `GLL ψ

Proof. If `Ł ψ by the semantical completeness theorem for the ℵ0-valued propo-
sitional calculus proved by C. C. Chang (see [13]) and termwise equivalence be-
tween MV-algebras and Wajsberg algebras (also reported in [13]), let W[0,1] be
the standard real unit interval Wajsberg algebra, W[0,1] |= ψ . By Lemma 2.2 the
Wajsberg algebra W[0,1] is a term reduct of the standard real unit interval Heyting
Wajsberg algebra A[0,1], thus A[0,1] |= ψ . By Theorem 4.1, `GLL ψ .

We introduce the intuitionistic propositional calculus IPC. Let Ω := 〈∧,∨,→G

,0〉 be a language of type 〈2,2,2,0〉. The intuitionistic propositional calculus,
in symbols IPC := 〈Ω,`IPC〉 is the deductive system presented by the following
collection of axioms (I1-9) and inference rule MP:
(I1) α →G (β →G α)
(I2) α →G (β →G (α ∧β ))
(I3) (α ∧β )→G α

(I4) (α ∧β )→G β

(I5) α →G (α ∨β )
(I6) β →G (α ∨β )
(I7) (α ∨β )→G ((α →G γ)→G ((β →G γ)→G γ))
(I8) (α →G β )→G ((α →G (β →G γ))→G (α →G γ))

(MP) α,α→Gβ

β

It can be easily observed that the language Ω can be defined into the language
Λ. Then the induced set of formulas Fm(Λ) is an extension of Fm(Ω).

Theorem 4.3. For any formula ρ in the set of formulas defined by induction on
the traditional way in Ω (i.e.Fm(Ω)):

`IPC ρ ⇒ `GLL ρ

Proof. If `IPC ρ by the completeness theorem of IPC respect to the class of
Heyting algebras [15], let H[0,1] be the standard real unit interval Heyting alge-
bra, H[0,1] |= ρ . By Lemma 2.2 the Heyting algebra H[0,1] is a term reduct of
the standard real unit interval Heyting Wajsberg algebra A[0,1], thus A[0,1] |= ρ .
By Theorem 4.1, `GLL ρ .
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Definition 4.1. A deductive system S over a pointed language type with distin-
guished constant symbol 1 is said to be a pointed discriminator logic if it arises
as the 1-assertional logic of a pointed discriminator variety.

Corollary 4.1. Gödel Łukasiewicz Logic is a pointed discriminator logic.

Definition 4.2. Let S be a deductive system over a language type Λ. A non-
empty set {σi | i ∈ I} of binary Λ-formulas is said to be a deduction-detachment
system for S if, for all Γ∪{α,β} ⊆ Fm(Λ) and for all i ∈ I:

Γ,α `S β ⇔ Γ `S σi(α,β ).

S is said to have the (uniterm) deduction-detachment theorem (DDT) if it has a
(unitary) deduction-detachment system.

DDT has been extensively studied in abstract algebraic logic. For a survey, see
the tutorial paper [7].

Theorem 4.4. Gödel Łukasiewicz Logic has DDT.

Proof. We have proved the variety of Heyting Wajsberg algebras to be a dis-
criminator variety and to have EDPC. W. Block and D. Pigozzi in [5] have
proved that in such conditions the related arising 1-assertional logic (i.e. Gödel
Łukasiewicz Logic) has DDT.

Theorem 4.5. Gödel Łukasiewicz Logic is decidable.

Proof. In Corollary 3.2 we have proved the variety of Heyting Wajsberg alge-
bras to have the finite model property (FMP). It is well known in abstract alge-
braic logics that if a finitely axiomatized variety has FMP then its 1-assertional
logic is decidable. Thus GLL is decidable.

Theorem 4.6. Gödel Łukasiewicz Logic is strongly complete.

Proof. In Theorem 3.4 we have proved the variety of Heyting Wajsberg algebras
to be complete with respect to the standard unitary real interval model as quasi-
variety (i.e. with respect to quasi-equations). Then its 1-assertional logic (i.e.
GLL) is strongly complete.
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