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1. Introduction

Since the classical work of Birkhoff and von Neumann [4], logical and alge-
braic perspectives of several aspects of quantum theory have been proposed.
Leading examples are orthomodular lattices [21], and effect algebras, appeared
independently under several names (e.g. D-posets [23]) as a generalization of
orthomodular posets [13, 16]. Moreover, effect algebras play a fundamental role
in various studies on fuzzy probability theory [3, 17] also.

In recent times, quantum computation itself stirred increasing attention, and
an array of related algebraic structures arose [5, 6, 18, 15]. Those structures stem
from an abstract description of circuits obtained by combinations of quantum
gates [7]. Let us mention as examples quantum MV-algebras [12], quasi MV-
algebras,

√
′quasi MV-algebras and product MV-algebras [25, 14, 10, 28].

Even if those structures are plainly related to quantum computing, some of
the functions in their types are algebraic abstractions of irreversible transforma-
tions, e.g. the truncated disjunction “⊕” [7].

These observations provides a general framework for a probabilistic-type
representation of continuous functions in the real interval [0,1] as quantum op-
erations in the sense of [24]. Therefore, in the present paper we show that
all those algebraic structures mentioned so far are fully settled into the general
model of quantum computing, based on quantum operations acting on density
operators.

The irreversible quantum operational approach has plenty of advantages in
the implementation of quantum computational devices: as Aharonov, Kitaev
and Nisan discussed [1], there are several relevant problems to deal with in the
usual unitary model of quantum computation. Those problems (such as mea-
surements, or noise and decoherence ) disappear in the non-unitary (i.e. non-
reversible) model. In fact, although quantum computational processes permit
measurements in the middle of the computation, however, the state of the com-
putation after a measurement is a mixed state. Moreover, to implement quantum
computers, noise and, in particular, decoherence are important obstacles. The
main problem in this interface between quantum physics and quantum compu-
tation models is that quantum noise and decoherence are non-unitary operations
that cause a pure state to become a mixed state.

In this note, we propose a simple construction on density matrices (dubbed
polynomial operations) that permits to resort, in terms of probability distribu-
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CONTINUOUS FUNCTIONS AS QUANTUM OPERATIONS

tions, to a Stone-Weierstrass type theorem. That result implies that any continu-
ous function can be regarded, from a probabilistic point of view, and up to a cer-
tain approximation, as a quantum operation, Theorems 3.3 and 3.4. The results
are organized as follows: in Section 2 we provide all the basic notions, in Sec-
tion 3 we show an overview of a probabilistic version of the Stone-Weierstrass
theorem in the framework of quantum operations (further detalis are showed in
[11]), in Section 4 some applications of our main result to the case of product
MV-algebra [28] are given, and lastly in Section 5 some possible future investi-
gation issues are illustrated and a few conclusive remarks drawn.

2. Basic notions

A quantum system in a pure state is described by a unit vector in a Hilbert
space. In the Dirac notation a pure state is denoted by |ψ〉 (〈ψ|). A quantum
bit or qubit, the fundamental concept of quantum computation, is a pure state in
the Hilbert space C2. The standard orthonormal basis {|0〉, |1〉} of C2 is called
the logical basis. Thus a qubit |ψ〉 may be written as a linear superposition
of the basis vectors with complex coefficients |ψ〉 = c0|0〉+ c1|1〉 with |c0|2 +
|c1|2 = 1.

Quantum mechanics reads out the information content of a pure state via
the Born rule, according to which the probability value assigned to a qubit is
defined as follows:

p(|ψ〉) = |c1|2.

The states of interest for quantum computation lie in the tensor product⊗nC2 =
C2 ⊗C2 ⊗ ·· · ⊗C2, where ⊗nC2 = C2 if n = 1. The space ⊗nC2 is a 2n-
dimensional complex Hilbert space. The 2n-computational basis consists of
the 2n orthogonal states |ι〉 (0≤ ι ≤ 2n), where ι is in binary representation and
it can be seen as the tensor product of the states |ι1〉⊗ |ι2〉⊗ · · · ⊗ |ιn〉 where
ι j ∈ {0,1}. A pure state |ψ〉 ∈ ⊗nC2 is generally a superposition of the basis
vectors: |ψ〉= ∑

2n

ι=1 cι |ι〉 with ∑
2n

ι=1 |cι |2 = 1.
In general, a quantum system is not in a pure state. This might be because

the system is coupled with an environment, it is subject to a measurement pro-
cess etc. In those cases, the state-evolution is no longer reversible and the sys-
tem is said to be in a mixed state. A convenient mathematical description of a
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mixed state is given by the notion of density operator, i.e. an Hermitian positive
operator ρ on a 2n-dimensional complex Hilbert space with trace tr(ρ) = 1.

A pure state |ψ〉 can be represented as a limit case of mixed state in the
form ρ = |ψ〉〈ψ|. In particular, each vector of the logical basis of C2 can be
associated to a density operator P0 := |0〉〈0| or P1 := |1〉〈1| that represents the
falsity-property and the truth-property, respectively. One can represent an arbi-
trary density matrix ρ in terms of a tensor products of the Pauli matrices:

σ0 =

(
1 0
0 1

)
σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
in the following way:

ρ =
1
2n ∑

µ1...µn

Pµ1...µnσµ1⊗·· ·⊗σµn ,

where µi ∈ {0,x,y,x} for each i ∈ {1, . . . ,n}. The real expansion coefficients
Pµ1...µn are given by Pµ1...µn = tr(σµ1 ⊗ ·· · ⊗ σµnρ). Since the eigenvalues
of the Pauli matrices are ±1, the expansion coefficients satisfy the inequality
|Pµ1...µn | ≤ 1. In what follows, for sake of simplicity, we will use without dis-
tinction I or σ0. We denote by D(⊗nC2) the set of all density operators of⊗nC2;
hence the set D =

⋃
i∈N D(⊗nC2) will be the set of all possible density opera-

tors. Moreover, we can identify in each space D(⊗nC2) two special operators
P(n)

0 = 1
2n In−1⊗P0 and P(n)

1 = 1
2n In−1⊗P1 that represent, in this framework, the

falsity-property and the truth-property, respectively. The probability of truth p

of a density operator ρ is dictated by the Born rule and equals

p(ρ) = tr(P(n)
1 ρ).

In case ρ = |ψ〉〈ψ|, where |ψ〉= c0|0〉+ c1|1〉, then p(ρ) = |c1|2.
Let ρ ∈ D(C2). Then ρ can be represented as a linear superposition ρ =

1
2(I + rxσx + ryσy + rzσz), where rx, ry, rz are real numbers such that r2

x + r2
y +

r2
z ≤ 1. Therefore, every density operator ρ in D(C2) has the matrix represen-

tation:

ρ =
1
2

(
1+ rz rx− iry

rx + iry 1− rz

)
=

(
1−α β

β ∗ α

)
(1)
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Furthermore, any real number λ (0 ≤ λ ≤ 1) uniquely determines a density
operator as follows:

ρλ = (1−λ )P0 +λP1 =
1
2
(I +(1−2λ )σz) =

(
1−λ 0

0 λ

)
(2)

In virtue of (1) and (2), one may verify that, whenever ρ ∈D(C2), then p(ρ) =
1−rz

2 and p(ρλ ) = λ . Thus each density operator ρ in D(C2) can be written as

ρ =

(
1−p(ρ) a

a∗ p(ρ)

)
(3)

In the usual model of quantum computation the state of a system is pure and the
operations (quantum gates) are represented by unitary operators. Nevertheless,
in case a system is not completely isolated from the environment its evolution
is, in general, irreversible. A model of quantum computing that relates to that
phenomenon is mathematically described by means of quantum operations (as
quantum gates) acting on density operators (as information quantities).

Given a finite dimensional complex Hilbert space H, we will denote by
L (H) the vector space of all linear operators on H. Let H1,H2 be two finite
dimensional complex Hilbert spaces. A super operator is a linear operator
E : L (H1)→L (H2) sending density operators to density operators [2]. This
is equivalent to say that E is trace-preserving and positive, i.e. sends positive
semi-definite Hermitian operators to positive semi-definite Hermitian operators.
A super operator E is said to be a quantum operation iff the super operator
E ⊗ IH is positive, where IH is the identity super operator on an arbitrary finite
dimensional complex Hilbert space H. In this case E is also called completely
positive. The following theorem, dued to K. Kraus [24], provide an equivalent
definition of quantum operations:

Theorem 2.1. A linear operator E : L (H1)→L (H2) is a quantum operation
iff ∀ρ ∈L (H1):

E (ρ) = ∑
i

AiρA†
i

for some set of operators {Ai} such that ∑i A†
i Ai = I.
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3. A probabilistic Stone-Weierstrass type theorem

The aim of the present section is to propose a representation, in probabilistic
terms, of a particular class of polynomials via quantum operations. Such a result
will be expedient to prove a probabilistic Stone-Weierstrass type theorem. First
of all, let us introduce some notations and preliminary definitions. The term
multi-index denotes an ordered n-tuple α = (α1, . . . ,αn) of non negative integers
αi. The order of α is given by |α| = α1 + . . . . . .+αn. If x = (x1, . . . ,xn) is an
n-tuple of variables and α = (α1, . . . ,αn) a multi-index, the monomial xα is
defined by xα = xα1

1 xα2
2 . . .xαn

n . In this language a real polynomial of order k is a
function P(x) = ∑|α|≤k aαxα such that aα ∈ R.

Let x = (x1, . . . ,xn) and k be a natural number. If we define the set Dk(x) as
follows:

Dk(x) = {(1− x1)
α1xβ1

1 . . .(1− xn)
αnxβn

n : αi +βi = k, i ∈ {1, . . . ,n}} (4)

then we obtain the following useful lemmas:

Lemma 3.1. Let X1, . . . ,Xn be a family of matrices such that

Xi =

(
1− xi bi

b∗i xi

)
and let X = (⊗kX1)⊗ (⊗kX2)⊗·· ·⊗ (⊗kXn). Then

Diag(X) = Dk(x1, . . . ,xn).

Proof. It can be verified that ⊗kXi = {h1h2 . . .hk : h j ∈ {(1− xi),xi},1 ≤ j ≤
k} = {(1− x1)

αxβ

1 : α + β = k}. Thus, (⊗kX1)⊗ (⊗kX2)⊗ ·· · ⊗ (⊗kXn) =

{(1−x1)
α1xβ1

1 . . .(1−xn)
αnxβn

n : αi+βi = k, i ∈ {1, . . . ,n}}. Whence our claim
follows.

Lemma 3.2. Let x = (x1, . . . ,xn) and k be a natural number. For any monomial
xα , such that | α |≤ k, the following conditions hold:

1. xα = ∑y∈Dk(x) δyy;
2. 1−xα = ∑y∈Dk(x) γyy;

where δy and γy are in {0,1}.
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Proof. First, let us define, for any i ∈ {1, . . . ,n}, a matrix Xi as follows

Xi =

(
1− xi 0

0 xi

)
1) Let xα = xα1

1 xα2
2 . . .xαn

n such that | α |≤ k. Thus, there are s1, . . . ,sn such that
αi + si = k. Let W = (⊗s1X1)⊗ (⊗s2X2)⊗ ·· ·⊗ (⊗snXn) and consider the
matrix Wxα . In view of Lemma 3.1, Diag(Wxα) ⊆ Dk(x1, . . . ,xn) since
every element in Diag(Wxα) is a monomial of order nk. Further, since
tr(Wxα) = (trW)xα = 1xα = xα , we obtain xα = tr(Wxα), i.e. the re-
quired polynomial expansion.

2) Let X = (⊗kX1)⊗ (⊗kX2)⊗ ·· · ⊗ (⊗kXn). By Lemma 3.1, Diag(X) =
Dk(x1, . . . ,xn) and tr(X) = 1. Upon recalling that xα = ∑y∈Dk(x) δyy, we
define γy = 1 if δy = 0 and γy = 0 if δy = 1. Therefore,

1 = tr(X)

= ∑
y∈Dk(x)

δyy+ ∑
y∈Dk(x)

γyy

= xα + ∑
y∈Dk(x)

γyy

and 1−xα = ∑y∈Dk(x) γyy.

In virtue of the previous claims, we can prove a technical but rather important
theorem:

Theorem 3.3. Let x = (x1, . . . ,xn) be an n-tuple of variables, and let P(x) =
∑y∈Dk(x) ayy be a polynomial such that y ∈Dk(x), 0≤ ay ≤ 1 and the restriction
P(x) �[0,1]n be such that 0 ≤ P(x) �[0,1]n≤ 1. Then there exists a polynomial
quantum operation P : L (⊗nkC2) → L (⊗nkC2) such that, for any n-tuple
σ = (σ1, . . . ,σn) in D(C2),

p(P((⊗k
σ1)⊗·· ·⊗ (⊗k

σn))) = P(p(σ1), . . . ,p(σn)).

Moreover,

P((⊗k
σ1)⊗·· ·⊗ (⊗k

σn)) = (
1

2nk−1 ⊗
nk−1 I)⊗ρP(p(σ1),...,p(σn)).
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Proof. Let σ1, . . . ,σn be density operators on C2. Assume that for any σi

σi =

(
1− xi bi

b∗i xi

)
Hence, p(σi) = xi. Evidently, σ = (⊗kσ1)⊗ ·· · ⊗ (⊗kσn) is a 2nk × 2nk ma-
trix and, by Lemma 3.1, Diag(σ) = Dk(x1, . . . ,xn). Thus, each y ∈ Dk(x)
can be seen as the (i, i)-th entry of Diag(σ). Further, the polynomial P(x) =
∑y∈Dk(x) ayy = ∑

2nk

j=1 a jy j is such that every y j is the ( j, j)-th entry of Diag(σ).
Let, now, y j0 ∈ Diag(σ).

a) We want to place the elements of the form a j0y j0 in the (2s,2s)-th entries

of a 2nk×2nk matrix. Let us consider the 2nk×2nk matrix A2s
j0 =

√
a j0

2nk−1 D2s
j0

such that D2s
j0 has 1 just in the (2s, j0)-th entry and 0 in any other entry. One

may verify that A2s
j0 σ(A2s

j0)
† is the required matrix. Moreover:

∑
2s

A2s
j0 σ(A2s

j0)
† =

1
2nk−1


0 0 0 0 . . .
0 a j0y j0 0 0 . . .
0 0 0 0 . . .
0 0 0 a j0y j0 . . .
...

...
...

...
. . .


b) Let us recall that 1 = ∑y∈Dk(x) y = ∑

2nk

j=1 y j. Then:

1−
2nk

∑
j=1

a jy j =
2nk

∑
j=1

y j−
2nk

∑
j=1

a jy j =
2nk

∑
j=1

(1−a j)y j.

We now want to stick the elements of the form (1− a j0)y j0 into the (2s−
1,2s−1)-th entries of a 2nk×2nk matrix. Let us consider the 2nk×2nk matrix

A2s−1
j0 =

√
1−a j0
2nk−1 D2s−1

j0 such that D2s−1
j0 have 1 just in the (2s−1, j0)-th entry

and 0 in any other entry. Again, one may verify that A2s−1
j0 σ(A2s−1

j0 )† is the
required matrix. Furthermore:

∑
2s−1

A2s−1
j0 σ(A2s−1

j0 )† =
1

2nk−1


(1−a j0)y j0 0 0 0 . . .

0 0 0 0 . . .
0 0 (1−a j0)y j0 0 . . .
0 0 0 0 . . .
...

...
...

...
. . .


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Thus, some calculations show that:

P = ∑
j0

∑
2s

A2s
j0 σ(A2s

j0)
† +∑

j0
∑

2s−1
A2s−1

j0 σ(A2s−1
j0 )†

= (
1

2kn−1 ⊗
nk−1 I)⊗

(
1−∑

2nk

j=1 a jy j 0
0 ∑

2nk

j=1 a jy j

)

Now, set A = ∑ j0 ∑2s(A2s
j0)

†A2s
j0 +∑ j0 ∑2s+1(A

2s+1
j0 )†A2s+1

j0 . Our task is to ver-
ify that A = I.

c) First of all, notice that the matrix (A2s
j0)

†A2s
j0 has the value

a j0
2nk−1 just in the

( j0, j0)-th entry, while any other entry is 0. Thus, the matrix ∑2s(A2s
j0)

†A2s
j0

has the value
2nk−1a j0

2nk−1 = a j0 in the ( j0, j0)-th entry and all the other entries
equal 0. Hence:

∑
j0

∑
2s
(A2s

j0)
†A2s

j0 =


a1 0 0 0 . . .
0 a2 0 0 . . .
0 0 a3 0 . . .
0 0 0 a4 . . .
...

...
...

...
. . .


d) On the other hand the matrix (A2s−1

j0 )†A2s−1
j0 has the value

1−a j0
2nk−1 just in the

( j0, j0)-th entry and 0 in any other. Thus, the matrix ∑2s−1(A
2s−1
j0 )†A2s−1

j0

has the value
2nk−1(1−a j0 )

2nk−1 = 1−a j0 in the ( j0, j0)-th entry and any other is 0.
Hence:

∑
j0

∑
2s−1

(A2s−1
j0 )†A2s−1

j0 =


1−a1 0 0 0 . . .

0 1−a2 0 0 . . .
0 0 1−a3 0 . . .
0 0 0 1−a4 . . .
...

...
...

...
. . .


Thus, ∑ j0 ∑2s(A2s

j0)
†A2s−1

j0 +∑ j0 ∑2s−1(A
2s−1
j0 )†A2s−1

j0 = I. Whence, by Theo-
rem 2.1, P is a quantum operation.
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In virtue of Theorem 3.3, we can now establish a probabilistic version of the
classical Stone-Weierstrass theorem.

Theorem 3.4. Let x = (x1, . . . ,xn) be an n-tuple of variables and f : [0,1]n →
(0,1) be a continuous function. Then, for each ε > 0 there exists a quantum
operation P : L (⊗nkC2)→ L (⊗nkC2) and a constant M ≥ 1 such that, for
any density matrix σ = (⊗kσ1)⊗·· ·⊗ (⊗kσn), the following inequality holds:

| p(P(σ))− 1
M

f (p(σ1), . . . ,p(σn)) |≤ ε.

Proof. Let f : [0,1]n→ (0,1) be a continuous function. By the classical Stone-
Weierstrass theorem, there exists a polynomial P0(x1, . . . ,xn)=∑|α|≤k aαxα such
that for each ε > 0, | P0 − f |≤ ε

2 . Let aα1 , . . . ,aαn be positive coefficients
and aβ1 , . . . ,aβs be negative coefficients in the polynomial P0(x1, . . . ,xn). Let

M be a positive real number such that ∑
s
i=1|aβi |

M ≤ ε

2 . Let us define a polyno-

mial P by P(x1, . . . ,xn) = ∑
n
i=1

aαi
M xαi +∑

s
j=1
|aβ j |

M (1−xβ j). Then, we obtain that

P(x1, . . . ,xn) =
1
M P0(x1, . . . ,xn)+

∑
s
i=1|aβi |

M . Therefore, in [0,1]n:

| P− 1
M

f | = | P− 1
M

P0 +
1
M

P0−
1
M

f |

≤ | P− 1
M

P0 |+ |
1
M

P0−
1
M

f |

≤ ε

2
+

ε

M
≤ ε

So, by Lemma 3.2, we obtain that P(x) = ∑y∈Dk(x) ayy is such that ay ≥ 0
and 0 ≤ P(x) ≤ 1 in [0,1]n. Whence, by Theorem 3.3, there exists a quan-
tum operation P : L (⊗nkC2)→L (⊗nkC2) associated to P such that for each
n-tuple σ = (σ1, . . . ,σn), with σi in D(C2), p(P((⊗kσ1)⊗ ·· ·⊗ (⊗kσn))) =
P(x1/p(σ1), . . . ,xn/p(σn)).1 Thus

| p(P((⊗k
σ1)⊗·· ·⊗ (⊗k

σn))))−
1
M

f (p(σ1), . . . ,p(σn)) |≤ ε.

1 By xi/p(σi) we mean the attribution of the value p(σi) to the variable xi.
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4. Representing the standard PMV-operations

In this section we apply the results obtained to two functions (namely, the prod-
uct t-norm •, and the Łukasiewicz conorm ⊕) of definite importance in fuzzy
logic. Let us recall some notions first.

The standard PMV-algebra [10, 28] is the algebra

[0,1]PMV = 〈[0,1],⊕,•,¬,0,1〉,

where [0,1] is the real unit segment, x⊕ y = min(1,x+ y), • is the real prod-
uct, and ¬x = 1− x. This structure plays a notable role in quantum comput-
ing, in that it decribes, in a probabilistic way, a relevant system of quantum
gates named Poincarè irreversible quantum computational algebra [5, 8]. The
connection between quantum computational logic with mixed states and fuzzy
logic, comes from the election of a system of quantum gates such that, when in-
terpreted under probabilistic semantics, they turn out in some kind of operation
in the real interval [0,1]. The above-mentionated PMV −algebra is a structure
that represents algebraic counterpart of the probabilistic semantics conceived
from the continuous t-norm. On the other hand, the use of fuzzy logics (and
infinite-valued Łukasiewicz logic in particular) in game theory and theoretical
physics was pioneered in [26, 27], linking the mentioned structures with Ulam
games and AF−C∗-algebras, respectively. We will pay special attention to the
study of the Łukasiewicz t-norm, due to its relation with Ulam games and its
possible applications to error-correction codes in the context of quantum com-
putation.

Evidently, ¬ can be expressed as a polynomial in the generator system
D1(x); whence by Theorem 3.3, it is representable as a polynomial quantum
operation. A possible representation can be the following: NOT (ρ) = σxρσ†

x .
In fact, p(NOT (ρ)) = 1−p(ρ).

Furthermore, • can be represented by a polynomial in the generator sys-
tem D2(x,y). According with the construction presented in Theorem 3.3, the
following representation obtains. Let us consider the following matrices:

G1 =


1√
2

0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 G2 =


0 1√

2
0 0

0 0 0 0
0 0 0 0
0 0 0 0

 G3 =


0 0 1√

2
0

0 0 0 0
0 0 0 0
0 0 0 0


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G4 =


0 0 0 0
0 0 0 0
1√
2

0 0 0
0 0 0 0

 G5 =


0 0 0 0
0 0 0 0
0 1√

2
0 0

0 0 0 0

 G6 =


0 0 0 0
0 0 0 0
0 0 1√

2
0

0 0 0 0



G7 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1√

2

 G8 =


0 0 0 0
0 0 0 1√

2
0 0 0 0
0 0 0 0


One may verify that ∑

8
i=1 Gi(τ ⊗σ)G†

i = 1
2 I⊗ ρp(τ)p(σ) where σ ,τ ∈ D(C2).

Thus, by Kraus representation Theorem [24], ∑
8
i=1 Gi(τ ⊗σ)G†

i is a quantum
operation, and p(∑8

i=1 Gi(τ ⊗ σ)G†
i ) = p(τ) • p(σ). That quantum operation

represents the well known quantum gate IAND modulo a tensor power [5, 29].
As regards the Łukasiewicz conorm⊕, it can be seen that it is not a polynomial,
see Figure 1.

FIG. 1: The Łukasiewicz conorm

Therefore, our idea is to obtain a polynomial P(x,y) in some generator system
Dk(x,y), such that P(x,y) can approximate the Łukasiewicz sum.
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By using numerical methods, we get the following approximating polyno-
mial of ⊕ in [0,1]:

P(x,y) =
5

12
x(1− x)+

5
12

y(1− x)+
5
12

x(1− y)+
5

12
y(1− y)+

1
2

x+
1
2

y,

whose graph is depicted in Figure 2.

FIG. 2: P(x,y)

Let us remark that 0≤ P(x,y)≤ x⊕ y. Then, e = max[0,1]{(x⊕ y)−P(x,y)} ≤
0.08, as Figure 3 shows. Furthermore, one readily realizes that P(x,y) is a
polynomial obtained from the generator system D2(x,y), that also satisfies the
hypothesis of Theorem 3.3. Thus, P(x,y) is representable as a polynomial quan-
tum operation P⊕, where

p(P⊕(τ⊗σ)) = (p(τ)⊕p(σ))±0.08.

5. Conclusions and open problems

In virtue of the results in Section 4, it turns out that the approximation obtained
in the case of PMV-algebras is definitely accurate. Further, in [11], authors
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FIG. 3: (x⊕ y)−P(x,y)

show a covergence theorem that allows to achieve every degree of accuracy; the
price to pay is the increasing of the degree of the approximating polynomial.
In our opinion, that is an interesting achievement, since it provides a (quantum)
computational motivation for the investigation of algebraic structures equipped
with the Łukasiewicz sum and, to a certain extent, it relates “classical” fuzzy
logic to quantum computational logics.

Nonetheless, some general remarks on the whole construction are in order
as well.

1. If one wants to apply our results to the models of (quantum) comput-
ing, efficiency is of central importance. Unfortunately, since the number
of copies required in our construction corresponds to the degree of the
approximating polynomial, it is impossible to generally specify the di-
mension of the Hilbert space required to achieve, given a certain ε , the
approximating polynomial.

2. Since the work of Ekert and other scholars [22, 20, 19, 9], a direct study of
estimations of linear and non-linear functionals of (quantum) states using
quantum networks has been proposed. This approach has the advantage
that it bypasses quantum tomography, providing more direct estimations

96



CONTINUOUS FUNCTIONS AS QUANTUM OPERATIONS

of both linear and non-linear functionals of a state. It could be of interest,
in our opinion, to investigate if, and in what cases, our construction can
be carried out by a quantum network.
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