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ABSTRACT. In this paper I consider an interpretation of future contingents
which motivates a unification of a Łukasiewicz-style logic with the more classi-
cal supervaluational semantics. This in turn motivates a new non-classical logic
modelling what is “made true by history up until now.” I give a simple Hilbert-
style proof theory, and a soundness and completeness argument for the proof
theory with respect to the intended models.
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Will there be a sea battle tomorrow? If we take indeterminism seriously, we
might agree that there is—as yet—no fact of the matter concerning a sea battle to-
morrow. It is neither settled now that there will be a battle tomorrow, nor settled now
that there won’t be a battle tomorrow.

Once we agree on this basic point, there are at least two major ways to develop
this idea in a formal system. The first is due to Łukasiewicz. He thought that future
contingents motivated a three-valued logic [3]. Statements which are true now are
evaluated asT, those which are false now are evaluated asF, and those which are now
neither true nor false are evaluated asN. Truth values of truth-functionally compound
statements are evaluated using the truth tables of Łukasiewicz’s three-valued logic.

Another approach to future contingents uses van Fraassen’s technique ofsuper-
valuations[6, 7]. A history (a completed series of moments) decides absolutely
every statement one way or another, and a statement is evaluated asT at a moment
when it is true at all histories passing through that moment, it is evaluated asF at a
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moment when it is false at all histories passing through that moment, and otherwise
it is indeterminate.

These two approaches differ in their evaluation of truth-functionally compound
statements. For Łukasiewicz’s approach, ifA is neither true now nor false now, so
is A ∧ ∼A. EvaluatingA ∧ ∼A with supervaluations, however, you get a different
result. SinceA ∧ ∼A is false in every history (they are complete and consistent
two-valued evaluations) it is also false at every moment—even if that moment has
not decided betweenA and∼A. Furthermore, for a supervaluationist truth-at-a-
moment ispersistent. An earlier moment is included inmorehistories than a later
moment, so anything true at the later earlier moment is true at the later moment.
On Łukasiewicz’s approach, persistence fails. If two statements receive the value
N at a moment, then a conditional with one as the antecedent and the other as the
consequent isT. If these two statements are then resolved, one asT and the other
asF, then a conditional with the true antecedent and false consequent becomesfalse
after earlier being true, and persistence fails.

In the rest of this paper I will develop both Łukasiewicz’s approach and the su-
pervaluational approach a little more, and show that contrary to these appearances,
they need not be seen as rivals. With some small modifications to the way that we
understand the guiding intuitions behind Łukasiewicz’s three-valued logic, we may
see that supervaluations and a properly three-valued system may live together quite
happily.

1. A Łukasiewicz-style Approach

To facilitate comparison with the supervaluational approach with branching time,
we will consider a slight revision of Łukasiewicz’s logic. First, we will have aframe
F of moments. That is, we have a collectionF of moments, ordered by a reflexive,
transitive and antisymmetric relation≤, of ‘earlier than or equal to’. Statements
in our language are tenseless (instead of “there will be a sea battle tomorrow” they
are of the kind “there is a sea battle on October 21, 2005”), and consist of a class
of atomic statements, then closed under the connectives∧, ∼ and→ in the usual
fashion.

A modelconsists of a frame and a pair of relations�+ and�− between moments
and statements satisfying a number of conditions. Firstly, atomic statements are
persistent. That is, ifm ≤ n andm �+ p (the world up tom makesp true) then
n �+ p too, and similarly, ifm �− p (the world up tom makesp false) thenn �− p
too.
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Secondly, conjunction and negation interact with�+ and�− as follows:

• m �+ A ∧B iff m �+ A andm �+ B;

• m �− A ∧B iff m �− A or m �− B.

• m �+ ∼A iff m �− A;

• m �− ∼A iff m �+ A.

The interesting clause we need is that for implication. Łukasiewicz would evaluate
implication as follows:

• m �+ A → B iff if m �+ A thenm �+ B and ifm �− B thenm �− A;

• m �− A → B iff m �+ A andm �− B.

But this would contradict persistence, as we have seen: supposeA andB are both
neither true nor false atm. Then by this condition,A → B is true atm. But if A
becomes true at a latern, andB becomes false at thatn, thenA → B becomes false
at thatn, contradicting the condition that if something is true it remains true.

Slaney, Surendonk and Girle noticed this [5], and argued for the slight revision
of Łukasiewicz’s logic by evaluatingA → B as follows:

• m �+ A → B iff for every n ≥ m if n �+ A thenn �+ B and if n �− B
thenn �− A;

• m �− A → B iff m �+ A andm �− B.

Once we adopt this condition (and so, modify Łukasiewicz’s logic just enough to
satisfy persistence for all formulas) we will find the accommodation with a super-
valuational account within our grasp. The resulting system is a well-behaved logic,
a little weaker than Łukasiewicz’s three-valued logic. A Hilbert style axiomatisation
is simple.

A → (B → A ∧B)
(A → B) →

(
(C → A) → (C → B)

)
A →

(
(A → B) → B

)
A ◦B → (A ◦ (B ◦B)) ∨ ((A ◦A) ◦B)

A ∧B → A A ∧B → B
A ∧ (B ∨ C) → (A ∧B) ∨ C

∼∼A → A
(A → ∼B) → (B → ∼A)

A,A → B ` B
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whereA◦B is∼(A → ∼B), andA∨B is∼(∼A∧∼B).1 We can also introduce> as
p → p for some arbitrarily chosenp, and⊥ as∼>, noting that these satisfym �+ >
andm 6�− > always, andm 6�+ ⊥ andm �− ⊥ in every model respectively, so
it does not matter whichp we chose to begin with. Similarly, we can setA ⊃ B
to beA → (A → B), and it follows that this satisfies the intuitionistic evaluation
condition: m �+ A ⊃ B iff for every n ≥ m, if n �+ A thenn �+ B (and it
also satisfiesm �− A ⊃ B iff m �+ A andm �− B.) It follows that the∧,∼,⊃
fragment of our logic is exactly that of Nelson’s constructive negation [4, 8]. And
conversely, we can defineA → B in Slaney, Surendonk and Girle’s systemF∗∗ [5]
by settingA → B to be(A ⊃ B) ∧ (∼B ⊃ ∼A).

In this system, we can define entailment between a set of statementsΣ and an-
other statementA as follows. Σ ` A holds whenever for any model and for every
momentm in that model, ifm �+ B for eachB ∈ Σ, thenm �+ A as well. It is
not difficult to show (and Slaney, Surendonk and Girle show this) thatΣ ` A holds
iff there is a proof ofA from Σ.

In this formalisation,�+ and�− encode the notions of ‘makes true’ and ‘makes
false’. We’ll leave discussion of how well they do this for the third section. Now we
will sketch the supervaluational approach.

2. Supervaluations

For the supervaluational approach we still deal with frames of moments ordered
in a tree [1, 2, 6]. However, we have only one relation� between moments and
statements, and this relation is parasitic on another relation betweenhistoriesand
statements. Ahistory is a maximal set of totally ordered moments in a frame. A
supervaluational modelon a frameF is a relation� between the histories in that
frame and statements, satisfying the usual boolean constraints.

• h � A ∧B iff h � A andh � B.

• h � ∼A iff h 6� A.

• h � A → B iff h 6� A or h � B.

These conditions enconde the constraint that histories decide every statement one
way or the other. They are consistent and complete. Then we can have a derived

1 The axiomA ◦B → (A ◦ (B ◦B))∨ ((A ◦A) ◦B) ensures that this logic is not a sub-logic of
Łukasiewicz’s infinitely valued logic (or even the four-valued logic). It is false in these logics. AssignA
andB the values2

3
. ThenA ◦B has the value1

3
, whileA ◦ (B ◦B) and(A ◦A) ◦B both have value0.
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notion of a statement being true at a moment by setting

• m �+
s A iff for every historyh wherem ∈ h, h � A.

and we may equally well define the notion of a statement being false at a moment by
setting

• m �−
s A iff for every historyh wherem ∈ h, h 6� A.

and the classical nature of truth-at-a-history shows us thatm �− A if and only if
m �+

s ¬A.
Using truth-at-a-moment we have another notion of entailmentΣ `′ A iff for

every model, and every momentm in that model, ifm �+
s B for eachB ∈ Σ, then

m �+
s A too. Or using the definition of�+

s in terms of truth-in-a-history, we see that
Σ `′ A if and only if for every history, ifh � B for eachB ∈ Σ, thenh � A too.

3. A Synthesis

The two approaches we have seen differ in their evaluation of formulae. We may
havem 6�+ A ∨ ∼A, while we must always havem �+

s A ∨ ∼A. People usually
conclude from this that the two approaches are invariably opposed to one another.
You must either evaluate formulae with respect to one scheme or another. Either
the law of the excluded middle fails (and we use a Łukasiewicz style evaluation of
formulae) or it doesn’t (and we use a supervaluational approach). But this is to ignore
the possibility that the two evaluations of statements are complementary. It is this
which drives thesynthesisof the two approaches, which I will examine in the rest of
the paper.

The guiding idea of the synthesis is that the two formalisations are giving an
account of different things. Firstly, anF∗∗ evaluation gives an account ofwhat is
made true/false by history up until some moment. That is, ifm �+ A, then there is
something in history up untilm in virtue of whichA is true. (And correspondingly,
if m �− A, then there is something in history up untilm in virtue of whichA is
false). The supervaluational approach modelswhat is be true, given that the history
of the world passes through this moment. Both are important notions, but they are
distinct. If there is a sea battle tomorrow or not, then this is true in virtue of some-
thing which happenstomorrow, not some part of history up until now. So, the two
notions disagree on the evaluation of that statement.

How can a proper synthesis of the two approaches work? We might think that we
could reason as follows. A historyh makesA true iff m �+ A for somem ∈ h. But
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this would be wrong. Consider an infinite history of coin tosses. It’s reasonable to
assume that the history as a whole would make “there are either an infinite number
of heads or an infinite number of tails tossed” without that being true in virtue of
any moment in that history. So a history might make something true without any
particular moment making that true. (Of course, if a moment makesA true, then so
will any history of which that moment is a part. But the converse need not hold, in
general.)

The constraint we need however, is that each history in a model can becon-
sistently completed. That is, given a historyh in some model, the set of formulae
Hh = {A : m �+ A for somem ∈ h} can be extended to a consistent, complete
F∗∗ theory. After all, the things made true by the moments of a history are all true
(in that history), so they ought to be consistently part of a world — and a world, we
assume, decides all statements as true or false.2

This (somewhat surprisingly) cuts down on the number ofF∗∗ models we can
use. We can find a model in which(A ⊃ ⊥) ∧ (∼A ⊃ ⊥) ⊃ ⊥ is invalid. This is
a model in which at some pointm, at no future point doesA get either affirmed or
denied. As a result,A ⊃ ⊥ and∼A ⊃ ⊥ are both true atm, but⊥ fails atm, so
our formula is false atm. This means that any historyh passing throughm cannot
be consistently completed — sinceA ⊃ ⊥ and∼A ⊃ ⊥ are inHh, we cannot have
eitherA or∼A in a consistent extension ofHh.

So, for histories to be consistently completed, we need to ensure that our models
validate(A ⊃ ⊥) ∧ (∼A ⊃ ⊥) ⊃ ⊥. It turns out that this is all we need to ensure,
as our next two theorems show.

THEOREM 1 Each of the following classes of models validate exactly the same for-
mulae.

1. Models which validate(A ⊃ ⊥) ∧ (∼A ⊃ ⊥) ⊃ ⊥.

2. Models in which for every historyh, the set of formulasHh has a complete,
consistent extension.

3. Models in which every history has an endpoint which is complete.(That is,
every historyh has a last momentmh, and for every atomp, mh �+ p or
mh �− p.)

4. Finite models in which the endpoint of every history is complete.

2 This does not count against the ‘temporal’ motivations of Łukasiewicz’s logic. For we can agree
that failures ofA ∨ ∼A are possible in the sense of the worldnot yetdeciding betweenA and∼A.
However, to say that an entirehistorydoesn’t decide betweenA and∼A is to have some other motivation
for the failure of excluded middle.
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PROOF We need only show that any formula invalidated in a model validating
(A ⊃ ⊥) ∧ (∼A ⊃ ⊥) ⊃ ⊥ is also invalidated in a finite model in which each
endpoint is complete. (For this model is also one in which everyHh has a complete
consistent extension.) This is achieved by a simple filtration argument. Given a for-
mulaB, consider a frame with an evaluation which invalidatesB while validating
every instance of(A ⊃ ⊥) ∧ (∼A ⊃ ⊥) ⊃ ⊥. We will perform a filtration by
identifying points in the model which agree on every subformula ofB, and each
(p ⊃ ⊥) ∧ (∼p ⊃ ⊥) ⊃ ⊥ wherep is an atom inB (call this set of formulaeB,
for convenience). Let this equivalence relation be denoted by ‘∼’, and let [m] be
the equivalence class ofm under∼. Then we let[m] ≤ [n] iff m′ ≤ n′ for some
m′ ∼ m andn′ ∼ n. This is clearly a partial order on the class of equivalence
classes. There are a finite number of equivalence classes, so this is a finite frame.

We set[m] �+ p (for p an atom inB) iff m �+ p, and[m] �− p iff m �− p. (The
evaluation of atoms not inB does not matter, for now.) It is a simple induction on
the complexity of formulae to show that these points agree with the original model
on formulae inB. The only interesting induction step is the⊃ one.

Let’s show that[m] �+ C1 ⊃ C2 iff m′ �+ C1 ⊃ C2 for anym′ ∼ m, assuming
the equivalence forC1 andC2. Firtstly, if [m] �+ C1 ⊃ C2 iff for every [n] ≥ [m],
if [n] �+ C1 then [n] �+ C2. Now, if n ≥ m, then[n] ≥ [m], and if n �+ C1,
then [n] �+ C1 (by induction hypothesis) so[n] �+ C2, and hencen �+ C2 (by
induction hypothesis), givingm �+ C1 ⊃ C2 as desired.

Now assuming thatm �+ C1 ⊃ C2, we wish to show that[m] �+ C1 ⊃ C2.
Here, take[n] ≥ [m], where[n] �+ C1. We want[n] �+ C2. Well, as[n] ≥ [m],
there’s somen′ ∼ n andm′ ∼ m wheren′ ≥ m′. By the filtration construction,m′

andm agree on all formulae inB, so sincem �+ C1 ⊃ C2, we havem′ �+ C1 ⊃ C2

too. And since[n] �+ C1 we haven′ �+ C1 by hypothesis, and son′ �+ C2, giving
the result we wished.

We also wish to show thatm �− C1 ⊃ C2 iff [m] �− C1 ⊃ C2, but this is
simple. We reason as follows:m �− C1 ⊃ C2 iff m �+ C1 andm �− C2 iff
[m] �+ C1 and[m] �− C2 iff [m] �− C1 ⊃ C2.

Now, the filtered frame is finite, it invalidatesB somewhere, and every point
validates(p ⊃ ⊥) ∧ (∼p ⊃ ⊥) ⊃ ⊥ for atomsp in B.

One final wrinkle involves ensuring the antisymmetry of≤. If [m] ≤ [n] and
[n] ≤ [m], then[m] and [n] must agree on all formuale inB, so they must be the
same equivalence class under∼. So we have antisymmetry.

So, this means that all histories have endpoints (by antisymmetry, and the finitude
of the frame), and since these endpoints validate(p ⊃ ⊥)∧(∼p ⊃ ⊥) ⊃ ⊥ for atoms
p in B, they must be complete with respect to these atoms. (And we can make the
other atoms true everywhere, and false nowhere, for simplicity). This is enough to
construct the desired model, and so prove the theorem. �
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This theorem is quite strong. We can strengthen it to full completeness of deducibil-
ity with respect to finite frames with complete endpoints (and hence for frames with
complete endpoints) by noting that consequence is compact, by our axiomatisation.
This gives us our next theorem.

THEOREM 2 The logic given by adding(A ⊃ ⊥)∧ (∼A ⊃ ⊥) ⊃ ⊥ to F∗∗ is sound
and complete with respect to the following classes of models:

1. Models in which for every historyh, the set of formulasHh has a complete,
consistent extension.

2. Models in which every history has a complete endpoint.

3. Finite models in which the endpoint of every history is complete.

Furthermore, if I have a model in which for every historyh, the set of formulasHh

has a consistent and complete extension, then I can perform somesurgeryon the
frame by adding a complete endpointmh to each historyh (if the history doesn’t
already have one), without disturbing the evaluation of formulae on the original mo-
ments. So, without any loss of generality, we can restrict our attention to models
with complete endpoints. These represent ‘history as a whole’. Once we have them,
we can define the supervaluational evaluation of formulae at momentsm �+

s A by
setting it to be equivalent to(∀m ≤ h)(h �+ A). It’s simple to then show that if
m �+ A thenm �+

s A. The converse doesn’t hold, of course.
So, we have a synthesis of the supervaluational and Łukasiewicz-style of evalua-

tions of statements in a temporal structure. This has motivated a small modification
of F∗∗ to ensure that histories can be consistently completed.

4. Morals of the story

There are a number of things we can learn from this story.
First, that syntheses of non-classical with classical insights are possible, and that

this can refine both our classical and non-classical stories. One example is the con-
clusion thatF∗∗ is incomplete as it stands.

Second, with different notions of truth at a point in a model come different con-
sequence relations. On a model we can say thatA is a classical consequence ofΣ
if for every momentm wherem �+

s B for eachB ∈ Σ, thenm �+
s A too. (Or

equivalently, for every historyh whereh � B for eachB ∈ Σ, thenh � A too).
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This is a classical notion of consequence.3 A more finely grained notion of conse-
quence can be defined in terms of�+. On this notion,A is a consequence ofΣ just
when for every momentm wherem �+ B for eachB ∈ Σ, m �+ A too. This is a
more discerning notion of consequence — the notion encoded by F∗∗ together with
(A ⊃ ⊥) ∧ (∼A ⊃ ⊥) ⊃ ⊥.

On our synthesis, two classical tautologies, likeA ∨ ∼A andB ∨ ∼B are com-
pletely indistinguishable as far as� and our first consequence relation goes, as classi-
cal tautologies are true in all histories. However,�+ and�− can distinguish classical
tautologies. Even though they are both true in all histories, thepart of a history which
makes them true can differ.4
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