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ABSTRACT. In this paper | consider an interpretation of future contingents
which motivates a unification of a Lukasiewicz-style logic with the more classi-
cal supervaluational semantics. This in turn motivates a new non-classical logic
modelling what is “made true by history up until now.” | give a simple Hilbert-
style proof theory, and a soundness and completeness argument for the proof
theory with respect to the intended models.
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Will there be a sea battle tomorrow? If we take indeterminism seriously, we
might agree that there is—as yet—no fact of the matter concerning a sea battle to-
morrow. It is neither settled now that there will be a battle tomorrow, nor settled now
that there won't be a battle tomorrow.

Once we agree on this basic point, there are at least two major ways to develop
this idea in a formal system. The first is due to Lukasiewicz. He thought that future
contingents motivated a three-valued logic [3]. Statements which are true now are
evaluated as, those which are false now are evaluated,and those which are now
neither true nor false are evaluatedvagruth values of truth-functionally compound
statements are evaluated using the truth tables of Lukasiewicz’s three-valued logic.

Another approach to future contingents uses van Fraassen’s technisuigesf
valuations[6, 7]. A history (a completed series of moments) decides absolutely
every statement one way or another, and a statement is evaluatest asmoment
when it is true at all histories passing through that moment, it is evaluatecizs
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moment when it is false at all histories passing through that moment, and otherwise
it is indeterminate.

These two approaches differ in their evaluation of truth-functionally compound
statements. For tukasiewicz's approachdifs neither true now nor false now, so
is A A ~A. EvaluatingA N ~A with supervaluations, however, you get a different
result. SinceA A ~A is false in every history (they are complete and consistent
two-valued evaluations) it is also false at every moment—even if that moment has
not decided betweer and~A. Furthermore, for a supervaluationist truth-at-a-
moment ispersistent An earlier moment is included imore histories than a later
moment, so anything true at the later earlier moment is true at the later moment.
On tukasiewicz's approach, persistence fails. If two statements receive the value
N at a moment, then a conditional with one as the antecedent and the other as the
consequent ig. If these two statements are then resolved, one asd the other
asF, then a conditional with the true antecedent and false consequent befedsres
after earlier being true, and persistence fails.

In the rest of this paper | will develop both tukasiewicz's approach and the su-
pervaluational approach a little more, and show that contrary to these appearances,
they need not be seen as rivals. With some small modifications to the way that we
understand the guiding intuitions behind tukasiewicz’s three-valued logic, we may
see that supervaluations and a properly three-valued system may live together quite

happily.

1. Atukasiewicz-style Approach

To facilitate comparison with the supervaluational approach with branching time,
we will consider a slight revision of tukasiewicz’s logic. First, we will havieaane
F of momentsThat is, we have a collectioR' of moments, ordered by a reflexive,
transitive and antisymmetric relation, of ‘earlier than or equal to’. Statements
in our language are tenseless (instead of “there will be a sea battle tomorrow” they
are of the kind “there is a sea battle on October 21, 2005”), and consist of a class
of atomic statements, then closed under the connectiyes and — in the usual
fashion.

A modelconsists of a frame and a pair of relatigns and=— between moments
and statements satisfying a number of conditions. Firstly, atomic statements are
persistent That is, ifm < n andm ET p (the world up tom makesp true) then
n E' ptoo, and similarly, ifm =~ p (the world up tom makesp false) them £~ p
too.
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Secondly, conjunction and negation interact withand=— as follows:
e mET AABIiff mET Aandm FT B;

e mE- AANBIiff mE~ AormFE~ B.

e mET ~Aiff mE~ A;

e mE- ~Aiff mET A.

The interesting clause we need is that for implication. tukasiewicz would evaluate
implication as follows:

e mEt A — Biffif mET Athenm E'Y Bandifm E~ Bthenm E~ A;
e mE~ A— Biff meET Aandm =~ B.

But this would contradict persistence, as we have seen: suppasel B are both
neither true nor false at. Then by this conditionA — B is true atm. But if A
becomes true at a later andB becomes false at that thenA — B becomes false
at thatn, contradicting the condition that if something is true it remains true.

Slaney, Surendonk and Girle noticed this [5], and argued for the slight revision
of Lukasiewicz’s logic by evaluating — B as follows:

e mFT A — Biffforeveryn > mif n F™ Athenn F* Bandifn F~ B
thenn F~ A;

e mE~ A— Biff mET Aandm E~ B.

Once we adopt this condition (and so, modify tukasiewicz’s logic just enough to
satisfy persistence for all formulas) we will find the accommodation with a super-
valuational account within our grasp. The resulting system is a well-behaved logic,
a little weaker than tukasiewicz’s three-valued logic. A Hilbert style axiomatisation
is simple.
A— (B — AN B)
(A= B)— ((C — A4) - (C — B))
A— ((A— B)— B)
AoB — (Ao (BoB))V((AoA)oB)
ANB—A AANB— B
AN(BVC)—= (AANB)VC
~~A— A
(A= ~B) = (B — ~A)
AJA— BFB
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wheredoBis~(A — ~B),andAv Bis~(~AA~B).! We can also introduce as

p — p for some arbitrarily chosep, and_L as~T, noting that these satisfy, =+ T
andm F~ T always, andn T 1 andm E~ L in every model respectively, so

it does not matter whiclp we chose to begin with. Similarly, we can sét> B
tobeAd — (A — B), and it follows that this satisfies the intuitionistic evaluation
condition: m E* A D B iff foreveryn > m, if n ET Athenn E* B (and it
also satisfiesn == A D Biff m T Aandm F~ B.) It follows that theA, ~, >
fragment of our logic is exactly that of Nelson’s constructive negation [4, 8]. And
conversely, we can definéd — B in Slaney, Surendonk and Girle’s systeift [5]

by settingA — Btobe(A D B) A (~B D ~A).

In this system, we can define entailment between a set of statememtd an-
other statementl as follows. X - A holds whenever for any model and for every
momentm in that model, ifm F+ B for eachB € ¥, thenm ET A as well. Itis
not difficult to show (and Slaney, Surendonk and Girle show this)¥hiatA holds
iff there is a proof ofA from X.

In this formalisation=" and="— encode the notions of ‘makes true’ and ‘makes
false’. We'll leave discussion of how well they do this for the third section. Now we
will sketch the supervaluational approach.

2. Supervaluations

For the supervaluational approach we still deal with frames of moments ordered
in a tree [1, 2, 6]. However, we have only one relatiobetween moments and
statements, and this relation is parasitic on another relation betinstmiesand
statements. Auistoryis a maximal set of totally ordered moments in a frame. A
supervaluational modedn a frameF is a relation= between the histories in that
frame and statements, satisfying the usual boolean constraints.

e hEANBIff hE Aandh E B.
e hE~AIff h ¥ A.
e hEA— Biff hi# AorhE B.

These conditions enconde the constraint that histories decide every statement one
way or the other. They are consistent and complete. Then we can have a derived

1 The axiomAo B — (Ao (Bo B))V ((Ao A) o B) ensures that this logic is not a sub-logic of
tukasiewicz’s infinitely valued logic (or even the four-valued logic). It is false in these logics. Askign
andB the vaIue%. ThenA o B has the vaIu%, while Ao (Bo B) and(A o A) o B both have valué.
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notion of a statement being true at a moment by setting
e m = Aiff for every historyh wherem € h, h = A.

and we may equally well define the notion of a statement being false at a moment by
setting

o m F, Aiff for every historyh wherem € h, h 7 A.

and the classical nature of truth-at-a-history shows usrth&t~ A if and only if
m ET —A.

Using truth-at-a-moment we have another notion of entailment’ A iff for
every model, and every momenmt in that model, ifm EF B for eachB € %, then
m EF Atoo. Or using the definition ¢f in terms of truth-in-a-history, we see that
¥+ Aif and only if for every history, ifh = B for eachB € ¥, thenh E A too.

3. A Synthesis

The two approaches we have seen differ in their evaluation of formulae. We may
havem #+ AV ~A, while we must always have: Ef A v ~A. People usually
conclude from this that the two approaches are invariably opposed to one another.
You must either evaluate formulae with respect to one scheme or another. Either
the law of the excluded middle fails (and we use a tukasiewicz style evaluation of
formulae) or it doesn’t (and we use a supervaluational approach). But this is to ignore
the possibility that the two evaluations of statements are complementary. It is this
which drives thesynthesi®f the two approaches, which | will examine in the rest of
the paper.

The guiding idea of the synthesis is that the two formalisations are giving an
account of different things. Firstly, aFf* evaluation gives an account wofat is
made true/false by history up until some momdiftat is, ifm =+ A, then there is
something in history up untik in virtue of which A is true. (And correspondingly,
if m E~ A, then there is something in history up until in virtue of which A is
false). The supervaluational approach moaeisit is be true, given that the history
of the world passes through this momeBbDth are important notions, but they are
distinct. If there is a sea battle tomorrow or not, then this is true in virtue of some-
thing which happentomorrow not some part of history up until now. So, the two
notions disagree on the evaluation of that statement.

How can a proper synthesis of the two approaches work? We might think that we
could reason as follows. A histolymakesA true iff m =+ A for somem € h. But
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this would be wrong. Consider an infinite history of coin tosses. It's reasonable to
assume that the history as a whole would make “there are either an infinite number
of heads or an infinite number of tails tossed” without that being true in virtue of
any moment in that history. So a history might make something true without any
particular moment making that true. (Of course, if a moment makasie, then so

will any history of which that moment is a part. But the converse need not hold, in
general.)

The constraint we need however, is that each history in a model caorbe
sistently completedThat is, given a history. in some model, the set of formulae
Hy, = {A: m ET Aforsomem € h} can be extended to a consistent, complete
F** theory. After all, the things made true by the moments of a history are all true
(in that history), so they ought to be consistently part of a world — and a world, we
assume, decides all statements as true or false.

This (somewhat surprisingly) cuts down on the numbeFdf models we can
use. We can find a model in whiglt > L) A (~4 D 1) D Lisinvalid. This is
a model in which at some point, at no future point doed get either affirmed or
denied. As aresultd > | and~A O L are both true ain, but | fails atm, so
our formula is false atn. This means that any histofypassing through. cannot
be consistently completed — singe> | and~A D> | are inHj,, we cannot have
either A or ~A in a consistent extension &f;,.

So, for histories to be consistently completed, we need to ensure that our models
validate(A D> L) A (~A D 1) D L. Itturns out that this is all we need to ensure,
as our next two theorems show.

THEOREM 1 Each of the following classes of models validate exactly the same for-
mulae.

1. Models which validatéA > L) A (~AD> 1) D L.

2. Models in which for every history, the set of formulagi;, has a complete,
consistent extension.

3. Models in which every history has an endpoint which is compi@tkat is,
every historyh has a last moment:;,, and for every atonp, m; =+ p or
my F p.)

4. Finite models in which the endpoint of every history is complete.

2 This does not count against the ‘temporal’ motivations of tukasiewicz's logic. For we can agree
that failures ofA v ~A are possible in the sense of the worldt yetdeciding betweem and ~A.
However, to say that an entihéstorydoesn’t decide betwee# and~ A is to have some other motivation
for the failure of excluded middle.
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PROOF We need only show that any formula invalidated in a model validating
(AD L)A(~A D> 1) D Lis also invalidated in a finite model in which each
endpoint is complete. (For this model is also one in which evéphas a complete
consistent extension.) This is achieved by a simple filtration argument. Given a for-
mula B, consider a frame with an evaluation which invalidaiesvhile validating
every instance ofA > L) A (~A D 1) D L. We will perform a filtration by
identifying points in the model which agree on every subformulaBpfand each

(p D L)A(~p D L) D L wherep is an atom inB (call this set of formulae3,

for convenience). Let this equivalence relation be denoted~Byénd let[m] be

the equivalence class of under~. Then we lefm] < [n] iff m’ < n’ for some

m’ ~ m andn’ ~ n. This is clearly a partial order on the class of equivalence
classes. There are a finite number of equivalence classes, so this is a finite frame.

We setim] E p (for pan atom inB) iff m E* p, and[m] £~ piff m F~ p. (The
evaluation of atoms not if? does not matter, for now.) It is a simple induction on
the complexity of formulae to show that these points agree with the original model
on formulae in3. The only interesting induction step is theone.

Let's show thatm] E+ C; D Cyiff m' T Cy D Oy for anym’ ~ m, assuming
the equivalence fo€; andCs. Firtstly, if [m] ET C; D Cs iff for every [n] > [m],
if [n] EY C; then[n] T Cs. Now, if n > m, then[n] > [m], and ifn FT C},
then[n] F* C; (by induction hypothesis) sp] Ft Cs, and hencer E™ Cs (by
induction hypothesis), givingn ™ C; D C, as desired.

Now assuming thatn =+ C; D C3, we wish to show thapn] =+ C; > Cs.
Here, takdn] > [m], where[n] ET C;. We want[n] £+ Cy. Well, as[n] > [m],
there's some’ ~ n andm’ ~ m wheren’ > m’. By the filtration constructiony’
andm agree on all formulae i3, so sincen F™ C; D C,, we haven’ E+ C; D Oy
too. And sincdn] F* C; we haven’ E™ C} by hypothesis, and s@ =+ Cs, giving
the result we wished.

We also wish to show thats E~ C; D Cy iff [m] E~ C; D Cs, but this is
simple. We reason as followsn =~ C; D O, iff m Et Cy andm E~ O, iff
[m] EY Cyand[m] E~ Cy iff [m] E~ C; D Cs.

Now, the filtered frame is finite, it invalidateB somewhere, and every point
validates(p > L) A (~p D L) D L for atomsp in B.

One final wrinkle involves ensuring the antisymmetry<of If [m] < [n] and
[n] < [m], then[m] and [n] must agree on all formuale ifi, so they must be the
same equivalence class underSo we have antisymmetry.

So, this means that all histories have endpoints (by antisymmetry, and the finitude
of the frame), and since these endpoints validate L)A(~p D L) D L foratoms
p in B, they must be complete with respect to these atoms. (And we can make the
other atoms true everywhere, and false nowhere, for simplicity). This is enough to
construct the desired model, and so prove the theorem. |
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This theorem is quite strong. We can strengthen it to full completeness of deducibil-
ity with respect to finite frames with complete endpoints (and hence for frames with
complete endpoints) by noting that consequence is compact, by our axiomatisation.
This gives us our next theorem.

THEOREM 2 The logic given by addingd > L) A (~A D 1) D L toF* is sound
and complete with respect to the following classes of models:

1. Models in which for every history, the set of formulagi;, has a complete,
consistent extension.

2. Models in which every history has a complete endpoint.
3. Finite models in which the endpoint of every history is complete.

Furthermore, if | have a model in which for every histdrythe set of formulagd},
has a consistent and complete extension, then | can perform sommeryon the
frame by adding a complete endpoint, to each historyh (if the history doesn’t
already have one), without disturbing the evaluation of formulae on the original mo-
ments. So, without any loss of generality, we can restrict our attention to models
with complete endpoints. These represent ‘history as a whole’. Once we have them,
we can define the supervaluational evaluation of formulae at moment$ A by
setting it to be equivalent tovm < h)(h ET A). It's simple to then show that if
m ET Athenm I A. The converse doesn't hold, of course.

So, we have a synthesis of the supervaluational and Lukasiewicz-style of evalua-
tions of statements in a temporal structure. This has motivated a small modification
of F** to ensure that histories can be consistently completed.

4. Morals of the story

There are a number of things we can learn from this story.

First, that syntheses of non-classical with classical insights are possible, and that
this can refine both our classical and non-classical stories. One example is the con-
clusion thatF** is incomplete as it stands.

Second, with different notions of truth at a point in a model come different con-
sequence relations. On a model we can say thit a classical consequence f
if for every momentn wherem £} B for eachB € %, thenm ! A too. (Or
equivalently, for every historyy whereh E B for eachB € 3, thenh E A too).
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This is a classical notion of consequericA more finely grained notion of conse-
guence can be defined in termsof. On this notion A is a consequence of just
when for every moment: wherem =+ B for eachB € 3, m F™ A too. This is a
more discerning notion of consequence — the notion encodedhtogether with
(A>L)An(~AD1)D 1.

On our synthesis, two classical tautologies, like/ ~A andB vV ~B are com-
pletely indistinguishable as far &sand our first consequence relation goes, as classi-
cal tautologies are true in all histories. Howevet,and== can distinguish classical
tautologies. Even though they are both true in all historiegp#éntof a history which
makes them true can différ.
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