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ABSTRACT. This paper studies Łukasiewicz’s many-valued logic enriched
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Introduction

There is a direct relationship between any logical calculus S and the class of
adequate models for it - i.e. the class of algebraic structures which verify exactly
the provable formulae of S. For example Boolean algebras are the algebraic counter-
part of classical propositional logic and Heyting algebras correspond to intuitionistic
propositional logic (see pp.380-3 in [DH01]). This fruitful interaction allows alge-
braic investigation to have a direct insight into a given calculus and conversely pure
proof-theoretical techniques may contribute to pursue algebraic results.

The concept of MV-algebra was first introduced by C.C.Chang [Ch58] to pro-
vide a new proof of completeness of Łukasiewicz’s ℵ0-valued propositional calculus
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[CDM00]. His proof [Ch59], however, is not self-contained, since it exploits the
completeness of the first order language of totally ordered Abelian group theory.

In Chang’s analysis the model based on the unit interval of real numbers [0,1]
is prototypical, because it represents the set of truth-values image of the evaluation
map of Łukasiewicz’s ℵ0-valued propositional calculus.

Chang [Ch58] defined an algebra with two primitive operators. Their mutual
combinations allowed him to define new useful operators as well as their dual ones.

Recently MV-algebras enriched with new operators has been widely investigated.
These new operators have an intended clear interpretations in [0,1]-model (i.e. the
so called standard MV-algebra).

One of these operators is the Stonean negation studied by L.P.Belluce in [Be97].
It should be mentioned that a similar negation operator (i.e. ∆-operator) had been
presented by Matthias Baaz in [Ba96]. In this article Baaz studied Gödel’s infinite-
valued logic [Go33] enriched with ∆-operator. In a linear structure with involution
(for instance in standard MV-algebra) Baaz’s ∆-operator and Stonean negation are
trivially mutually definable.

Later Petr Hajek in [Ha98] utilized Baaz’s ∆-operator to enrich Łukasiewicz’s
many-valued logic. The axiomatization of this new logical system is provided by
traditional Łukasiewicz’s axioms, an added set of five axioms (∆1-∆5), Modus Po-
nens and a new rule of Generalization. The Lindenbaum-Tarski [CDM00] algebra of
this new logic gives rise to a new class of algebraic structure: MV∆-algebras. These
structures are particular MV-algebras whose axioms are Łukasiewicz’s ones together
with a set of six equations, which are the algebraic counterparts of (∆1-∆5) and of
Generalization rule. P.Hajek [Ha98] proved a subdirect representation Theorem as
well as a completeness Theorem for this new logic.

F.Esteva, L.Godo and F.Montagna [EGM01] extended Hajek’s system and its re-
sults into a generalized logical system (LΠ) containing Łukasiewicz’s logic, Product
logic [EGH96], Gödel’s infinte-valued logic, Takeuti and Titani’s propositional logic
[TT92], Pavelka’s rational and product logics [Pa79], Łukasiewicz’s logic with ∆,
Product and Gödel’s logics with ∆ and involution [EGHN00].

Some connections between MV∆-algebras and Stonean MV-algebras suggest
that representation and completeness for Stonean MV-algebras could be obtained in
a indirect way from Hajek’s results.

The main aim of this paper is to give a direct proof of these results, remaining in
its natural algebraic approach.

The Stonean property is what characterizes exactly at the algebraic level this
whole class of MV-algebras.

In [0,1]-model Stonean negation η and involution ¬ allow the easiest definitions
of the modal operators of necessity 2 and possibility 3 by their mutual combination
(in fact 2x = η¬x and 3x = ¬ηx).
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Furthermore G.Cattaneo, R.Giuntini and R.Pilla [CGP98] have proved that Sto-
nean MV-algebras are equivalent to BZMVdM -algebras and hence, thanks to the
completeness of the logic based on Stonean MV-algebras we prove in this paper,
the completeness of the one based on BZMVdM -algebras follows. Furthermore the
proof of the subdirect representation Theorem given in [CGP98] is incomplete, then
we provide a correct proof of this result for BZMVdM -algebras.

Since this work is purely algebraic we leave to the readers the chance of provid-
ing a proper logical sintax and an adequate axiomatization.

1. Basic notions

In this section we present MV-algebra axioms and some basic notions and recalls.
The axiomatization we are going to introduce is mainly due to Mangani [Ma73]. It
provides only five axioms while Chang’s original one [Ch58] was determined by
eleven equations and their dual versions.

Definition 1.1 An MV-algebra is a structureA=< A,⊕,¬,0> of type < 2, 1, 0 >.
For any x, y ∈ A : x ∨ y

def= ¬(¬x⊕ y)⊕ y. The following axioms are required:
(MV1) (x⊕ y)⊕ z = (y ⊕ z)⊕ x
(MV2) x⊕ 0 = x
(MV3) x⊕ ¬0= ¬0
(MV4) x ∨ y = y ∨ x
(MV5) ¬¬x = x

It is useful to define also the dual concepts: 1 def= ¬0, x� y
def= ¬(¬x⊕¬y), and

x ∧ y
def= ¬(¬x� y)� y.

We observe that the relation x ≤ y ⇔ x ∨ y = y induces in every MV-algebra a
distributive lattice order.

An MV-algebraA is linear (or totally ordered) iff for any pair of elements x, y ∈
A, either x ≤ y or y ≤ x.

Example 1.1. Standard MV-algebra.
A[0,1] =< [0, 1],⊕,¬, 0 >
where [0, 1] ⊂ R,
x⊕ y

def= min{1, x + y}
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and ¬x
def= 1− x.

In the sequel we’ll adopt the following notation. Given an MV-algebraA,∀x ∈ A
and ∀n ∈ N :

nx =


0 if n = 0
x if n = 1
x⊕ . . .⊕ x︸ ︷︷ ︸

n−times

, if 2 ≤ n ∈ N

Definition 1.2. Let A be an MV-algebra and x ∈ A. The order of x is the
smallest n ∈ N if it exists s.t. nx = 1. If n does not exist we say that the order of x
is infinite.

Definition 1.3. An MV-algebra A is archimedean if and only if ∀x ∈ A and
∀n ∈ N , nx ≤ y ⇒ x� y = x.

It can easily observed that the standard MV-algebra of example 1.1 is linear and
archimedean (i.e. ∀x 6= 0, x has a finite order) meanwhile Chang’s MV-algebra C
([Ch58], p.474) provides the smallest example of linear but not archimedean MV-
algebra.

Definition 1.4. An ideal J of an MV-algebra A is a subset of A which satisfies
the following conditions:

(I1) 0∈ J
(I2) if x ∈ J and y ≤ x, then y ∈ J
(I3) if x ∈ J and y ∈ J , then x⊕ y ∈ J

Definition 1.5. An ideal J of an MV-algebra A is proper iff 1 /∈ J .

Definition 1.6. Let A=< A,⊕,¬,0> be an MV-algebra, let I be an ideal of A
and x ∈ A. We introduce the definition of ideal generated by I ∪ {x}, denoted
Id(I ∪ {x}):

Id(I ∪ {x}) def= {y ∈ A | y ≤ i⊕ nx, for some i ∈ I and some n ∈ N}.
Further the ideal generated by x:
Id(x) def= the ideal generated by {0} ∪ {x}.

Definition 1.7. An ideal J of an MV-algebraA is maximal iff it is proper and for
any ideal I of A s.t. J ⊆ I , either I = J or I = A.
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Definition 1.8. An ideal J of an MV-algebra A is prime iff it is proper and if for
any pair of elements x, y ∈ A, either x� ¬y ∈ J or ¬x� y ∈ J .

Definition 1.9. Distance function on an MV-algebra A.
Let x, y ∈ A, d(x, y) def= (¬x� y)⊕ (x� ¬y).

Definition 1.10. Let J be an ideal of an MV-algebra A, ∀x, y ∈ A:
x ≡J y ⇔ d(x, y) ∈ J .

C.C.Chang [Ch58] had shown that the above relation ≡J is reflexive, symmetric
and transitive. Moreover in any MV-algebra A, ∀x, y, w, z ∈ A and for any ideal J
of A, the following conditions hold:

1) x ≡J y and w ≡J z ⇒ x⊕ w ≡J y ⊕ z,
2) x ≡J y ⇒¬x ≡J ¬y.
Thus ≡J is a congruence relation and in the same way of group theory [He82]

it induces a quotient MV-algebra A/J homomorphic to the original A. Moreover
C.C.Chang proved [Ch58] that if J is prime, then the quotient MV-algebras A/J
is linear . Let us now define the last main concepts necessary to present Chang’s
representation Theorem.

Definition 1.11. A direct product of a given family of MV-algebras {Ai | i ∈ I}
is an MV-algebra Πi∈IAi=< Πi∈IAi,⊕,¬,0 > where Πi∈IAi = the cartesian
product of {Ai | i ∈ I} and the operators are defined componentwise as the op-
erators of each original MV-algebra Ai. The 0-element is obviously the sequence of
all the 0-elements of {Ai | i ∈ I}.

Every element x of a direct product Πi∈IAi of MV-algebras {Ai | i ∈ I} is
expressed in the following way: x =< x1, ..., xn, .. > where each xi belongs to
each MV-algebra Ai of Πi∈IAi. We will use often this notation.

Definition 1.12. Let an MV-algebra Πi∈IAi be a direct product of a family of
MV-algebras {Ai | i ∈ I} and j ∈ I .

Let πj : Πi∈IAi 7→ Aj be the j-th projection function s.t. ∀x =< x1, ..., xn, .. >∈
Πi∈IAi, πj(x) def= xj .

An MV-algebra A is a subdirect product of a given family of MV-algebras {Ai |
i ∈ I} iff there exists a one-one homomorphism h : A7→ Πi∈IAi such that for any
j ∈ I , the compose map πj ◦ h is a homomorphism onto Aj .

Obviously every subdirect product of a family of MV-algebras {Ai | i ∈ I} is a
subalgebra of the direct product of the same family of MV-algebras.
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C.C.Chang in his article [Ch59] has proved:

Chang’s representation Theorem. Every MV-algebra is isomorphic to a subdi-
rect product of linear MV-algebras.

We have already recalled how≡J is a congruence relation with respect to the ba-
sic operations of any MV-algebra (see also either [CDM94] or [CDM00]). In Chapter
3 we will prove that with an enriched definition of prime ideal I , ≡I continues to
be a congruence relation even respect to the new added operator we are going to
introduce.

2. Stonean Negation and Stonean MV-algebras

Inspired by Ovchinnikov [Ov83] and by Belluce [Be97] we have begun to con-
sider generalized operators on MV-algebras. Moreover we have focused our atten-
tion on negations and particularly on Stonean ones. These negations characterize a
whole class of MV-algebras.

Definition 2.1. The set of Boolean elements
Let A be an MV-algebra. The set of all the idempotent elements of A is called

the set of Boolean elements of A and it is denoted by B(A).
B(A) def= {x ∈ A | x⊕ x = x}

In [CDM00] it is proved that in any MV-algebraA the following properties hold:

(B1) x ∈ B(A) ⇒ ∀y ∈ A, x� y = x ∧ y
(B2) x ∈ B(A) ⇒ ∀y ∈ A, x⊕ y = x ∨ y

Definition 2.2. Let A be an MV-algebra. A negation operator on A is a 1-ary
function ∼: A 7→ A such that ∀x, y ∈ A :

(i) if x ∈ B(A), then∼ x
def= ¬x (this condition guarantees that∼ is an extension

of classical negation).
(ii) x ≤ y ⇒∼ y ≤∼ x.

Definition 2.3. An MV-algebra A is Stonean iff ∀x ∈ A,∃η(x) ∈ B(A), s.t.
{y | y ∧ x = 0} = {y | y ≤ η(x)}.

It can be easily observed that for any x ∈ A, the corresponding Boolean element
η(x) of the above definition is trivially unique.
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Then a Stonean MV-algebra defines immediately a new operator:

Definition 2.4. Let A be a Stonean MV-algebra. A Stonean negation operator is
a map η: A 7→ B(A) associating to any element x ∈ A the unique above element
η(x).

Every linear MV-algebra is trivially Stonean once defined a Stonean negation
operator as:

η0(x) def=

{1 if x = 0

0 otherwise

Consequently every direct product of linear MV-algebras is Stonean with η(x) def=<
η0(x1), ..., η0(xn), .. >.

We provide now the smallest example of not Stonean MV-algebra: a subdirect
product of two Chang’s MV-algebras C ([Ch58], p.474) in which every element is a
ordered pair of components that both belong either to the subset {0, c, c + c, c + c +
c, ..} of the support C or to the subset {1, 1−c, 1−c−c, 1−c−c−c, ..} of the support
C of C. In this MV-algebra the set of the Boolean elements is composed only by the
two elements < 0, 0 > and < 1, 1 >. If x =< c, 0 >, < 1, 1 >/∈ {y | y ∧ x = 0},
< 0, 0 >6=< 0, c > and < 0, 0 >≤< 0, c >∈ {y | y ∧ x = 0}. It proves this
MV-algebra is not Stonean.

As shown by L.P.Belluce [Be97], in any Stonean MV-algebra A, ∀x, y ∈ A the
following properties hold:

(P1) x ∧ ηx = 0
(P2) η(x ∧ y) = ηx ∨ ηy
(P3) η(x ∨ y) = ηx ∧ ηy
(P4) ηx⊕ ηx = ηx
(P5) ηη(x⊕ y) = η(ηx� ηy) = ηηx⊕ ηηy
(P6) η¬x ≤ x ≤ ηηx

3. Subdirect Representation

We are going to deal with representation concerning Stonean MV-algebras. We
have already recalled that every MV-algebra is isomorphic to a subdirect product of
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linear MV-algebras that are trivially Stonean. In a subdirect product of linear stuc-
tures it is important to prove that the Stonean negation operator η of a given Stonean
MV-algebra A is preserved in each component of its subdirect representation such
that ∀ < x1, ..., xn, .. >∈ A, η < x1, ..., xn, .. >=< η0(x1), ..., η0(xn), .. >, since
η0 is the Stonean negation operator proper of any linear MV-algebra. To pursue this
goal we need an adequate notion of ideal. We will utilize a definition first introduced
by G.Cattaneo, R.Giuntini and R.Pilla in [CGP98], and their contribution into the
analisys of BZMVdM -algebras, although their proof of the representation Theorem
of this structure is incomplete.

Definition 3.1. Let J be an ideal of a Stonean MV-algebra A with its Stonean
negation operator η. J is a Stonean ideal (s-ideal) if and only if ∀x, y ∈ A, x� y ∈
J ⇒ ηηx� η¬y ∈ J .

Lemma 3.1. Let A be a Stonean MV-algebra, {0} is a s-ideal of A.

Proof:
Let x, y ∈ A and x � y = 0. Then ¬y ⊕ (x � y) = ¬y that is by definition

¬y ∨ x = ¬y and thus η(¬y ∨ x) = η¬y. By (P3) we obtain η¬y = η¬y ∧ ηx and
hence ηηx � (η¬y ∧ ηx) = ηηx � η¬y. But since for (P1) x � ηx ≤ x ∧ ηx = 0
and since ηx ∈ B(A) implies ηηx = ¬ηx we have, by definition of ∧ in terms of ⊕
and�, ηηx� (η¬y∧ηx) = ηηx�ηx� (η¬y⊕ηηx) = 0 and then, by substitution
ηηx� η¬y = 0.

In a direct product of two standard MV-algebras of example 1.1 for x =< 1, .5 >
and y =< .5, 1 >, x�¬y 6= 0 and ¬x�y 6= 0. Hence in general {0} is a not prime
s-ideal.

In a not archimedean linear MV-algebra A, for instance in Chang’s MV-algebra
C ([Ch58], p.474), ∀x ∈ A, if 16= x = na, with 0 6= a ∈ A and 1 < n ∈ N , we
have x� 1 = x ∈ Id(x) and ηηx� η¬1 = 1/∈ Id(x). We recall that in every linear
MV-algebra any ideal is trivially prime. Then here Id(x) is a prime not Stonean
ideal. Therefore in general neither the set of prime ideals is a subset of the set of
s-ideals nor vice versa.

The relation ≡J divides an MV-algebra into quotient MV-algebras related to its
ideals. Moreover if these ideals are prime, their quotient MV-algebras are linear
[Ch58]. ≡J is a congruence relation with respect to the basic operations of any
MV-algebra (see also either [CDM94] or [CDM00]). We have to prove that it also
preserves the Stonean negation operator.
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Theorem 3.1. Let A be a Stonean MV-algebra and let J be an s-ideal of A,
∀x, y ∈ A x ≡J y ⇒ ηx ≡J ηy.

Proof:
x ≡J y ⇔ (x�¬y)⊕ (¬x� y) ∈ J. Hence (x�¬y) ∈ J and (¬x� y) ∈ J . It

implies, being J an s-ideal, that ηηx� η¬¬y = ηηx� ηy ∈ J and ηηy � η¬¬x =
ηηy � ηx ∈ J . This is equivalent to ηx ≡J ηy and therefore with J , ≡J is a
congruence relation also with respect to the Stonean negation operator.

¿From this result we can directly infer:

Corollary 3.1. Let A be a Stonean MV-algebra and J a prime s-ideal belonging
to A, the natural homomorphism from A onto the quotient linear MV-algebra (then
Stonean) A/J preserves the Stonean negation operator.

In an equivalent way to the traditional case presented by C.C.Chang in [Ch58] we
shall build for any Stonean MV-algebra an isomorphic subdirect product of quotient
MV-algebras with prime s-ideals.

We provide a technique to generate s-ideals:

Definition 3.2. Let A=< A,⊕,¬,0 > a Stonean MV-algebra, let J an ideal of
A, we define J0 = {x ∈ A | ∃y ∈ J : x ≤ ηηy}.

By (P6) we have immediately that J ⊆ J0.

Theorem 3.2. Let J an ideal of a Stonean MV-algebra A=< A,⊕,¬,0 >. J0

is the smallest s-ideal containing J .

Proof:
First, we prove that J0 is an ideal.
Suppose a, b ∈ J0. Thus ∃x, y ∈ J s.t. a ≤ ηηx and b ≤ ηηy. Then by

monotony of⊕ (Theorem 1.8 in [Ch58]) and respectively (P5), (B1) and (P3) a⊕b ≤
ηηx ⊕ ηηy = η(ηx � ηy) = η(ηx ∧ ηy) = ηη(x ∨ y). Clearly x ∨ y ∈ J since
x, y ∈ J . Hence a⊕ b ∈ J0 and (I3) holds. Trivially (I1) and (I2) hold too. Thus J0

is an ideal.
Now we prove that J0 is an s-ideal.
Suppose a � b ∈ J0. Then ∃x ∈ J s.t. a � b ≤ ηηx. Since (P6) η¬b ≤ b, we

have a � η¬b ≤ ηηx. Now by (B1) a � η¬b = a ∧ η¬b. Thus ηη(a � η¬b) =
ηη(a∧ η¬b) ≤ ηηx. Now if we join (P2) and (P3) we have (a∧ η¬b) = ηηa∧ η¬b.
Thus ηηa� η¬b ≤ ηηa ∧ η¬b ≤ ηηx and ηηa� η¬b ∈ J0.
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It remains to show that J0 is the smallest s-ideal containing J .
Clearly J ⊆ J0. Let I be an s-ideal of A, s.t. J ⊆ I . We want to show that

J0 ⊆ I . Let a ∈ J0. Then a ≤ ηηx for some x ∈ J . Then x ∈ I . Since I is an
s-ideal and x = x� 1, ηηx ∈ I . Thus a ∈ I .

To prove the next theorem we need to show the following results:

Lemma 3.2. In any MV-algebra A, ∀a, x, y, z ∈ A,
a ≤ x⊕ y, a ≤ x⊕ z ⇒ a ≤ x⊕ (y ∧ z).

Proof:
By monotony of ∧ (Theorem 1.5 of [Ch58]) and axiom 11 of [Ch58] we have

a = a ∧ a ≤ (x⊕ y) ∧ (x⊕ z) = x⊕ (y ∧ z).

Lemma 3.3. In any MV-algebra A, ∀x, y,∈ A, ∀m ∈ N ,
m(¬x� y) ∧m(x� ¬y) = 0.

Proof:
For duality by Theorem 3.7 of [Ch58].

Lemma 3.4. In any Stonean MV-algebra A, ∀x, y,∈ A,
x ∧ y = 0⇒ ηηx ∧ ηηy = 0.

Proof:
If x ∧ y = 0 then ηη(x ∧ y) = 0. By (P2) we have η(ηx ∨ ηy) = 0. Then, by

(P3), ηηx ∧ ηηy = 0.

Theorem 3.3. Let A be a Stonean MV-algebra. ∀a ∈ A, a 6= 0, there is a prime
s-ideal J ⊂ A s.t. a /∈ J .

Proof:
Suppose a 6= 0. Now by Lemma 3.1 {0} is an s-ideal. By Zorn’s Lemma, there

is an s-ideal J which is maximal w.r.t. the property “a /∈ J”.
Suppose, by ctr., ∃x, y ∈ A s.t. ¬x� y /∈ J and x� ¬y /∈ J .
We define J∼¬x�y := (Id(J ∪ {¬x� y}))0 and J∼x�¬y := (Id(J ∪ {x� ¬y}))0.
By Theorem 3.2, J∼¬x�y and J∼x�¬y are s-ideals containing Id(J ∪ {¬x � y})

and Id(J ∪ {x� ¬y}).
By definition of maximality of J , a ∈ J∼¬x�y and a ∈ J∼x�¬y .
Thus, ∃r ∈ Id(J ∪ {¬x � y}) and ∃s ∈ Id(J ∪ {x � ¬y}) s.t. a ≤ ηηr and

a ≤ ηηs.
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Now r = i ⊕ n(¬x � y) for some i ∈ J and n ∈ N , s = j ⊕m(x � ¬y) for
some j ∈ J and m ∈ N .

It implies, by (P5), that a ≤ ηη(i ⊕ n(¬x � y)) = ηηi ⊕ ηη(n(¬x � y)) and
a ≤ ηη(j ⊕m(x� ¬y)) = ηηj ⊕ ηη(m(x� ¬y)).

Let k = max{n, m}, then a ≤ (ηηi ⊕ ηηj) ⊕ ηη(k(¬x � y)) and a ≤ (ηηi ⊕
ηηj)⊕ ηη(k(x� ¬y)).

By Lemma 3.2 we have a ≤ (ηηi⊕ ηηj)⊕ (ηη(k(¬x� y)) ∧ ηη(k(x�¬y))).
By Lemma 3.3 k(¬x� y) ∧ k(x� ¬y) = 0.
By Lemma 3.4 ηη(k(¬x� y)) ∧ ηη(k(x� ¬y)) = 0. Hence a ≤ ηηi⊕ ηηj.
Since J is a s-ideal and i, j ∈ J , ηηi ∈ J and ηηj ∈ J . Thus ηηi⊕ηηj ∈ J . By

(I2) we have a ∈ J , against our ab absurdo hypothesis. Then J is a prime s-ideal.

Representation Theorem for Stonean MV-algebras. Every Stonean MV-algebra
A is isomorhic to a subdirect product of Stonean linear MV-algebras s.t. ∀x ∈ A,
x =< x1, ..., xn, .. >⇒ η < x1, ..., xn, .. > = < η0x1, ..., η0xn, .. >.

Proof:
A particular case of a theorem of Universal Algebra, due to Birkhoff [Bi67], is

shown in [CDM00] (Theorem 1.3.2); it tells us that a MV-algebra A is isomorphic
to a subdirect product of a family of linear MV-algebras if there exists a family of
prime ideals {Ji | i ∈ N} of A s.t.

⋂
Ji = {0}. By the previous Theorem, for

any x ∈ A there is a prime s-ideal J s.t. x /∈ J . Then {0} is the intersection of
all the prime s-ideals of A maximal with respect to the property “x /∈ J”. Hence A
is isomorphic to a subdirect product of quotient MV-algebras built with its prime s-
ideals. These MV-algebras are the homomorphic images of A, related to the natural
homomorphismes. These homomorphismes, by Corollary 3.1, preserve the Stonean
negation operator. Thus our proof is complete.

4. Algebraic Completeness

We will prove that an equation defined on our enriched language with Stonean
operator holds in any MV-algebra if it holds in the standard MV-algebra. We will
follow the track of Chang’s completeness Theorem [Ch59]. Then we assume famil-
iarity with this proof and with all the results utilized to pursue it (see also [CDM94]).
We recall that Chang’s proof is not self-contained but he exploits the completeness of
the first order theory of divisible totally ordered Abelian groups (Chang’s references
are [Ta31] and [Ta56] but, as reported in footnote at page 79 [Ch59], Tarski’s proof
has never appeared explicitly, then for a clear presentation of this result we advise
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the readers to consult appendix at page 91 of [CDM94]). As fundamental step of his
proof, C.C.Chang had build a totally ordered Abelian group made of infinite copies
of an MV-algebra. We introduce this expedient:

Definition 4.1. Let A be a linear MV-algebra. The algebraic structure GA is
defined in the following way:

GA
def= {(n, x) | n ∈ Z, x ∈ A− {1}}

Its operators are defined as:

(m,x) + (n, y) def=

 (n + m,x⊕ y) if x⊕ y 6= 1

(n + m + 1, x� y) if x⊕ y = 1

−(n, x) def=

 (−n,0) if x = 0

(−(n + 1),¬x) if 0 6= x 6= 1

and its related order relation is:

(n, x) v (m, y) def⇔ n < m or, n = m and x ≤ y

C.C.Chang in [Ch59] proved that GA=< GA,+,−,v, (0,0) > is a totally or-
dered Abelian group;

Moreover if we define:

Definition 4.2. Let G=< G,+,−, 0,v> be a totally ordered Abelian group,
u ∈ G :

Γ(G, u) def= {x ∈ G | 0 v x v u}
¬x

def= u− x

x⊕ y
def= min{u, x + y}

we can immediately verify that < Γ(G, u),⊕,¬, 0 > is a linear MV-algebra.

u ∈ G is a strong unit iff for any x ∈ G there exists an n ∈ N s.t. x v nu.

GA is composed of infinite copies of A; Γ(GA, (1,0)) belongs to them, then we
have:

Theorem 4.1. If A is a linear MV-algebra, Γ(GA, (1,0)) is isomorphic to A.

12
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This result can be generalized to:

Theorem 4.2. If u is the strong unit of G, there exists an isomorphism f from G
onto H = GΓ,(G,u):

i) f(u) = (1,0)
ii) x v y in G ⇔ f(x) v f(y) in H

Proof:
(See either Theorem 2.4.10 in [CDM94] or [Ch59]).

The first order language of totally ordered Abelian groups theory L′ is composed
by the usual logic symbols and 0,+,-,u,t with their traditional meaning. We have to
fix their corresponding definitions:

Definition 4.3. A language L of a Stonean MV-algebra A is composed by:
0 : costant
x1, ..., xn, .. : variables
¬ : unary functor
⊕ : binary functor
η : unary functor.

We define inductively an MVS-term:
1) 0, x1, ..., xn, .. are MVS-terms.
2) If xi is an MVS-term, then ¬xi is an MVS-term.
3) If xi and xj are MVS-terms, then xi ⊕ xj is an MVS-term.
4) If xi is an MVS-term, then ηxi is an MVS-term.

Let p be an MVS-term containing the variables x1, ..., xt and assume a1, ..., at

are elements ofA. Substituting an element ai ∈ A for all occurrences of the variable
xi in p, for i = 1, ..., t, by the above rules 1)-4) and interpreting the symbols 0,⊕,¬
and η as the corresponding operations in A, we obtain an element of A, denoted
pA(a1, ..., at). In more detail, proceeding by induction on the number of operation
symbols occurring in p, we define pA(a1, ..., at) as follows:

i) xAi = ai, for each i = 1, ..., t;
ii) (¬p)A = ¬(pA);
iii) (p⊕ q)A = (pA ⊕ qA);
iv) (ηp)A = η(pA).
By the above definition, given any Stonean MV-algebraA we can associate each

MVS-term in the variables x1, ..., xn with a function pA : An 7→ A. These functions
are called term functions on A.

An MVS-equation on variables x1, ..., xt is an expression p = q, where p and q
are MVS-term containing at most the variables x1, ..., xt.

13
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We say that an MV-algebra A satisfies an MVS-equation p = q (we write A|=
p = q) if and only if for any sequence of elements (a1, ..., at) ∈ A, pA(a1, ..., at) =
qA(a1, ..., at).

Theorem 4.3. If a Stonean MV-algebra A is subdirect product of a family of
linear MV-algebras (Stonean) {Ai | i ∈ I}, thenA|= p = q⇔ for any iAi |= p = q.

Proof:
In Chang’s subdirect representation Theorem there is a homomorphism from A

onto any linear MV-algebra of its subdirect product. Since we have proved that
the Stonean negation operator is preserved too into these structures, every MVS-
equation continues to hold in any Ai.

Vice versa if an MVS-equation holds in any Ai, it holds in their direct product
Πi∈IAi. Since A is isomorphic to a subalgebra of Πi∈IAi, it holds in A.

Corollary 4.1. An MVS-equation is satisfied in any Stonean MV-algebras if and
only if it is satisfied in any linear (Stonean with η0) MV-algebra.

We will report in the following steps Chang’s completeness Theorem, as it has
been presented in [CDM94], to check its validity with respect to the Stonean exten-
sion. Every totally ordered Abelian group can be embedded into a divisible totally
ordered Abelian group. From the completeness of the first order theory of these last
structures follows that every universal sentence of the first order theory of totally or-
dered Abelian groups is satisfied in the additive group Q of rational numbers if and
only if it is satisfied in any totally ordered Abelian group [Ch59]. Then any MVS-
equation has to be associated to an universal sentence of the first order language of
totally ordered Abelian groups theory (we will call it L′) to exploit its completeness.
We will do it by induction on the degree of complexity of an MVS-term.

Definition 4.4. The degree of complexity of an MVS-term p: d(p)def= the number
of times that symbols ⊕, ¬ and η appear in p.

We associate to any MVS-term p a term p′ ∈ L′ by induction on the degree of
complexity of p:

If d(p)=0 (p=0 or p = xi) then p′ = p.
We suppose to have associated MVS-terms until degree of complexity n:
if d(p)=n + 1, we can have either:
1) p = ¬q with d(q)=n or
2) p = q ⊕ r with d(q)≤ n and d(r) ≤ n or
3) p = ηq with d(q)=n
Let z be a free variable that belongs to L′, we define

14
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in case 1): p′ = z − q′ ;
in case 2): p′ = z u (q′ + r′);

in case 3): p′ =

{
z if q′ = 0

0 otherwise

Then we define αpq
def= ∀x1, ..., xn(0 v xi v z

∧
, ...,

∧
0 v xn v z) → p′ =

q′.

It can be easily checked, by the way GA has been built, that the following sen-
tence holds:

Proposition 1 Let A be a Stonean MV-algebra, let p = q an MVS-equation;
A |= p = q ⇔ αpq(z) is true in GA when we attribute to z the value (1,0).

At last we can introduce:

Completeness Theorem. An MVS-equation is satisfied in any Stonean MV-
algebra if and only if it is satisfied in the standard MV-algebra enriched with the
Stonean negation η0.

Proof:
⇐ (not trivial) : By contradiction we suppose there is an MV-algebra A such

that A6|= p = q. From Corollary 4.1 we infer that there is a linear MV-algebra B s.t.
B6|= p = q.

By Proposition 1 above there is an universal sentence β of the 1o order theory of
the totally ordered Abelian groups, β = ∀z > 0 αpq(z) s.t. β is false in GB , and
hence, by the completeness of totally ordered Abelian groups, β is false in Q (group
of rational numbers with usual operations).

It means that there is a c > 0, c ∈ Q s.t. c does not verify β in Q. Let’s consider
f : Q 7→ Q defined by f(x) def= c−1x. f(c) = 1. f is an isomorphism from Q onto
itself (antiautomorphism), then f preserves falsity of sentences and therefore β is
false in Q when we attribute to z the value 1 ∈ Q. By Theorem 4.2 Q is isomorphic
to GΓ(Q,1). Thus β is false in GΓ(Q,1) with z = 1 and, by Proposition 4.1 above,
Γ(Q, 1) = A[0,1] 6|= p = q.
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