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ABSTRACT. In this paper we survey the “informational view” of classical
propositional logic that has been outlined in (D’Agostino & Floridi, 2009;
D’Agostino, 2010, 2013; D’Agostino et al., 2013). This view is based
on a kind of “informational semantics” for the logical operators and on
a non-standard proof-theory. The latter is a system of classical natural
deduction (Mondadori, 1989; D’Agostino, 2005) that, unlike Gentzen’s
and Prawitz’s systems, provides natural means for measuring the “depth”
of inferences in terms of the minimum number of nested applications of a
single (non-eliminable) structural rule, which is an informational version
of the Principle of Bivalence and is closely related to classical (analytic)
cut. This leads to defining, in a natural way, hierarchies of tractable depth-
bounded logical systems that indefinitely approximate Boolean logic. We
argue that this approach may be apt to provide more realistic prescriptive
models of resource-bounded logical agents and, at the same time, solve
the most disturbing anomalies that affect the received view in classical
semantics and proof-theory. We also suggest that this informational view
of classical logic can partially vindicate the old Kantian idea of synthetic
a priori knowledge.
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1. Introduction: what role for logic in the theory of rationality?

In his book Minimal Rationality (1986), Christopher Cherniak maintained that
a theory of feasible and appropriate logical inferences constitutes and important
component of the theory of rationality, but an unconstrained logic is by itself
irrelevant to the psychology and epistemology of reasoners. The main problem
is that standard logical systems model a logically omniscient agent and provide
no means to account for the “cost of thinking”:1

Until recently, philosophy has uncritically accepted highly idealized
conceptions of rationality. But cognition, computation and information
have costs; they do not just subsist in some immaterial effluvium (Cher-
niak, 1986, p. 3).

In Cherniak’s view, the primary task for a logic that aims to play a prescrip-
tive role is to provide a theory of “a minimal agent who has limits on cognitive
resources such as time and memory” so that, “according to such a more realis-
tic account, an agent can have a less than perfect deductive ability” (Cherniak,
1986, p. 3).

However, logic cannot content itself with constructing models of the logical
competence of minimal agents. In fact, it is uncontroversial that the capability of
correctly recognizing inconsistency or logical entailment is a matter of degree.
While any agent who understands the meaning of “→” can recognize that A→B
and A logically entail B, fewer are able to perform a logical inference involving a
complex pattern of case reasoning and very few are able to prove a theorem from
the axioms of a mathematical theory. How can we measure and empirically test
the degree of difficulty or “logical depth” of an inference? To quote Cherniak
again:

Philosophy seems to have largely overlooked the point that without an
extensive theory of the difficulty of different inferences, which provides

1 This is essentially the same problem raised by Leonard Savage in his Difficulties in the
theory of personal probability: “A person required to risk money on a remote digit of π in order
to comply fully with the theory [of personal probability] would have to compute that digit, though
this would really be wasteful if the cost of computation were more than the prize involved. For the
postulates of the theory imply that you should behave in accordance with the logical implications
of all that you know. Is it possible to improve the theory in this respect, making allowance within
it for the cost of thinking, or would that entail paradox, as I am inclined to believe but unable to
demonstrate?” (Savage, 1967, p. 308).
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information on which ones will be accomplished under given conditions,
the predictive value of any attribution of a cognitive system of beliefs and
desires would be severely limited (Cherniak, 1986, p. 29).

This naturally leads to the following

Approximation problem: Can we define in a natural way a hi-
erarchy of logical systems that indefinitely approximate a given
ideal Logic in such a way that these approximations provide
useful formal models of the logical competence of different
resource-bounded agents?

Robust solutions to this problem are likely to have a significant practical impact
in all research areas — from economics, to philosophy and cognitive science —
where there is an urgent need for more realistic models of deduction, and require
an imaginative re-examination of logical systems as they are usually presented
in the literature. From this point of view, it would make sense to require that
a logical system consist not only in an algorithmic or semantic characterization
of a logic L, but also in a definition of how this logic L can be approximated in
practice by realistic (not logically omniscient) agents, no matter whether human
or artificial.

Despite its practical and theoretical significance, the approximation prob-
lem has been surprisingly neglected in the logical and philosophical literature.2

A first reason is the difficulty of finding robust solutions which are indepen-
dent of the choice of a specific formalism. A second reason is that the most
popular human-oriented formalizations of classical logic — Natural deduction,
Tableaux, Sequent Calculus — are structurally inadequate to define a measure
of the difficulty of inferences that satisfy some sensible requirements.3 A third
reason is deeply entrenched in our philosophical tradition and constitutes a huge

2 It has indeed received some attention in Computer Science and Artificial Intelligence
(Cadoli & Schaerf, 1992; Dalal, 1996, 1998; Crawford & Etherington, 1998; Massacci, 1998;
Sheeran & Stålmarck, 2000; Finger, 2004a,b; Finger & Wassermann, 2004, 2006; Finger & Gab-
bay, 2006), but comparatively little attention has been devoted to embedding such efforts in a
systematic proof-theoretical and semantic framework.

3 For example, the requirement that the meaning of the logical operators (as given by the
operational rules) remains the same throughout the sequence, so that an agent may still be credited
with grasping the meaning of a finite set of sentences, e.g., the axioms of a theory, even if (s)he
is unable to recognize all its logical consequences.
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stumbling block in the way of any sensible solution of the approximation prob-
lem.

According to the received view logic is informationally trivial. Deductive
inference is commonly described as being “tautological”, in the sense of being
uninformative or non-ampliative: the information carried by the conclusion is
(in some sense) contained in the information carried by the premises. This is
related to the claim that the validity of an inference depends solely on the mean-
ing of the “logical words” and convey no factual information. In this sense logic
is also said to be “analytic”. On the other hand, there is a tension between this
view and the well-known results showing that most interesting logics are either
undecidable or (very likely to be) intractable. How can logic be, at the same
time, informationally trivial and computationally hard? And if it really were
informationally trivial, how could we avoid logical omniscience and suitably
grade the difficulty of deductive inference for agents with bounded cognitive
resources? The fundamental question is:

(1) do we actually possess the information that the conclusion of a
valid inference is true whenever we possess the information that
its premises are true?

Here by “actually possessing” a piece of information we mean that it is informa-
tion that is accessible to us in practice, and not only in principle, and with which
we can operate as opposed to information that is only potentially available to
us.

The lack of a general decision procedure implies that the intuitive answer is
a loud “NO” in the domain of classical first-order logic. Since first-order logic
admits of no decision procedure, there is no guarantee that we are always in a
position to recognize the truth of a valid consequence A of a set Γ of sentences
whenever we recognize the truth of the sentences in Γ.

But even restricting our attention to propositional logic, the intuitive answer
is in the negative. The theory of computational complexity4 tells us that the deci-
sion problem for Boolean logic is co-NP complete (Cook, 1971), that is, among
the most difficult problems in co-NP. Even if yet unproven, the conjecture that
there exists no feasible decision procedure for such problems is widely believed
to be true. This means that we cannot expect a real agent, even if equipped with

4 See (Stockmeyer, 1987) for an introduction.

6



DEPTH-BOUNDED LOGIC FOR REALISTIC AGENTS

an up-to-date computer running a decision procedure for Boolean logic, to be
always able to recognize in practice that a certain conclusion follows from a
given set of premises.

Things do not improve if we consider the best known subclassical propo-
sitional logics, such as intuitionistic, relevance and linear logic. As for intu-
itionistic logic, which prima facie appears to be more appropriate than classical
logic to characterize logical consequence in terms of our knowledge or informa-
tion states, Richard Statman (1979) proved that it is PSPACE complete (as is its
pure implication fragment),5 and so — given that NP ⊆ PSPACE and that the
inclusion is believed to be strict — its computational complexity is likely to be
worse than that of classical logic. As for Relevance Logics, Alasdair Urquhart
proved that the main systems E (Entailment), R (Relevance Logic) and T (Ticket
Entailment) (Anderson & Belnap Jr, 1975) are all undecidable (Urquhart, 1984)
and that the computational complexity of the main decidable subsystems is not
better than that of Boolean logic (Urquhart, 1990). For example, the implication
fragment of R is ESPACE complete and the fragment known as first-degree en-
tailment — characterized by Belnap’s 4-valued logic (Belnap Jr., 1976, 1977) —
is co-NP complete. Finally, the full system of Linear Logic is undecidable (Lin-
coln, 1995), its multiplicative-additive fragment is PSPACE complete (Lincoln
et al., 1992) and the multiplicative fragment is NP complete (Kanovich, 1992).6

Thus, logic is informationally trivial only for ideal agents and we cannot real-
istically assume that a rational, but resource-bounded agent, be informed of all
the logical consequences of his or her beliefs. This strongly suggests that the
conclusion of a complex inference may convey information that is not contained
in the premises in the objective — not merely psychological — sense that there
is (and probably there will never be) a feasible procedure for extracting this
information from the information conveyed by the premises.

In the sequel we shall survey a new “informational view” of classical propo-
sitional logic that has been outlined in (D’Agostino & Floridi, 2009; D’Agostino,

5 More precisely (Statman, 1979) shows that intuitionistic propositional logic can be re-
duced to its implication fragment and that the latter is PSPACE-hard. It then follows from (Lad-
ner, 1977), where it is shown that S4 in in PSPACE and from the well-known polynomial trans-
lation of intuitionistic propositional logic into S4, that the decision problem for intuitionistic
propositional logic is PSPACE complete.

6 Indeed, even the constant-only fragment is NP complete (Lincoln & Winkler, 1994).
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2010, 2013; D’Agostino et al., 2013).7 This view is based on a kind of “in-
formational semantics” for the logical operators and on a non-standard proof-
theory. The latter is a system of classical natural deduction (Mondadori, 1989;
D’Agostino, 2005) that, unlike Gentzen’s and Prawitz’s systems, provides nat-
ural means for measuring the “depth” of inferences in terms of the minimum
number of nested applications of a single (non-eliminable) structural rule, which
is an informational version of the Principle of Bivalence and is closely related
to classical (analytic) cut. We argue that this approach may be apt to provide
an adequate solution to the approximation problem and, at the same time, solve
the most disturbing anomalies that surround the received view in classical se-
mantics and proof-theory. It leads to defining, in a natural way, a sequence of
tractable depth-bounded deduction systems that appear to be a plausible model
for representing rational agents with increasing, albeit bounded, cognitive re-
sources. We also suggest how this “informational view” of classical logic can
partially vindicate the old Kantian idea of synthetic a priori knowledge.

2. The received view and its anomalies

According to the received view purely deductive reasoning is “analytic” and,
therefore, “tautological”. Deductive inferences are valid solely by virtue of the
meaning of the logical operators and can be recognized as such by pure con-
ceptual analysis. Hence, the information carried by their conclusion is already
contained, albeit implicitly, in their premises. In this section we give an exposi-
tion of this view and discuss its main anomalies.

2.1. A persistent dogma of empiricism

The idea that deductive reasoning conveys no new information was one of the
trademarks of logical empiricism and originated in their rejection of any “syn-
thetic a priori” knowledge:

The scientific world-conception knows no unconditionally valid knowl-
edge derived from pure reason, no “synthetic judgments a priori” of the

7 Clearly there is a considerable amount of overlapping between the present exposition and
these papers, but here ideas and results that were scattered through them all are combined to-
gether for the first time to provide an overall picture of our approach of and of its philosophical
underpinnings.
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kind that lie at the basis of Kantian epistemology [. . .] It is precisely in
the rejection of the possibility of synthetic knowledge a priori that the
basic thesis of modern empiricism lies. The scientific world-conception
knows only empirical statements about things of all kinds, and analytic
statements of logic and mathematics (Hahn et al., 1973, p. 308).

According to the logical empiricists, the truths of logic and mathematics are
necessary and do not depend on experience. Given their rejection of any syn-
thetic a priori knowledge, this position could be justified only by claiming that
logical and mathematical statements are “analytic”, i.e. true “by virtue of lan-
guage”. This means that their truth can be recognized, at least in principle, by
means only of the meaning of the words that occur in them. Since information
cannot be increased independent of experience, such analytic statements must
also be “tautological”, i.e., carry no information content. Hence:

The conception of mathematics as tautological in character, which is
based on the investigations of Russell and Wittgenstein, is also held by
the Vienna Circle. It is to be noted that this conception is opposed not
only to apriorism and intuitionism, but also to the older empiricism (for
instance of J.S. Mill), which tried to derive mathematics and logic in an
experimental-inductive manner as it were (Hahn et al., 1973, p. 311).

The underlying idea is well represented in the following quotation from Hempel:

It is typical of any purely logical deduction that the conclusion to
which it leads simply re-asserts (a proper or improper) part of what has
already been stated in the premises. Thus, to illustrate this point by a very
elementary example, from the premise, “This figure is a right triangle”,
we can deduce the conclusion, “This figure is a triangle”; but this con-
clusion clearly reiterates part of the information already contained in the
premise. [. . .] The same situation prevails in all other cases of logical
deduction; and we may, therefore, say that logical deduction — which
is the one and only method of mathematical proof — is a technique of
conceptual analysis: it discloses what assertions are concealed in a given
set of premises, and it makes us realize to what we committed ourselves
in accepting those premises; but none of the results obtained by this tech-
nique ever goes by one iota beyond the information already contained in
the initial assumptions (Hempel, 1945, p. 9).

This view is a persistent dogma of (logical) empiricism that has survived Quine’s
reservations on the very notion of analyticity (Quine, 1961) to become part of
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the philosophical folklore. After all, Quine’s well-known arguments against
the analytic/synthetic distinction spared the claim that the notion of analyticity
had been sufficiently clarified in the restricted domain of logic. According to
(Quine, 1961), statements that are analytic “by general philosophical acclaim”
fall into two classes: those that may be called logically true, such as “no un-
married man is married” and those that may be turned into logical truths by
replacing synonyms with synonyms, such as “no bachelor is married”. Admit-
tedly, Quine’s problem is that “we lack a proper characterization of this second
class of analytic statements” for, in his view, “the major difficulty lies not in
the first class of analytic statements, the logical truths, but rather in the second
class, which depends on the notion of synonymy” (Quine, 1951, pp. 22–23 of
the 1961 edition).

Later on, in his The Roots of Reference, Quine clarified that the impossibility
of tracing a sharp demarcation between analytic and synthetic sentences does
not exclude that there may be undisputed cases of analytic sentences (typically
the logical laws) (Quine, 1973, pp. 79–80) and in a 1993 interview, he made his
position crystal-clear:

Yes so, on this score I think of the truths of logic as analytic in the
traditional sense of the word, that is to say true by virtue of the meaning
of the words. Or as I would prefer to put it: they are learned or can be
learned in the process of learning to use the words themselves, and involve
nothing more (Bergström & Føllesdag, 1994, p. 199).8

2.2. Semantic information

Probably the idea that logical truths and inferences are “analytic” owes most
of its philosophical appeal to the fact that it offers the strongest possible justifi-
cation of deductive practice: logical deduction provides an infallible means of
transmitting truth from the premises to the conclusion for the simple reason that
the conclusion adds nothing to the information that was already contained in the
premises. At the half of the 20th century Bar-Hillell and Carnap’s notion of “se-
mantic information” (Bar-Hillel & Carnap, 1953) closed the circle by providing
a precise mathematical characterization of the “information content” of a sen-
tence according to which all deductive inferences turn out to be “tautological”,
in the sense of being uninformative.

8 Quoted in (Decock, 2006).
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Although their effort was clearly inspired by the rising enthusiasm for Shan-
non and Weaver’s new mathematical theory of information (Shannon & Weaver,
1949), their starting point was their dissatisfaction with the nonchalant tendency
of fellows scientists to apply its concepts and results well beyond the “warranted
areas”. Shannon and Weaver’s central problem was only how uninterpreted data
can be efficiently encoded and transmitted. So the idea of applying their theory
to contexts in which the interpretation of data plays an essential rôle was a major
source of confusion and misunderstandings:

The Mathematical Theory of Communication, often referred to also
as Theory of (Transmission of) Information”, as practised nowadays, is
not interested in the content of the symbols whose information it mea-
sures. The measures, as defined, for instance, by Shannon, have nothing
to do with what these symbols symbolyse, but only with the frequency of
their occurrence. [. . .] This deliberate restriction of the scope of the Sta-
tistical Communication Theory was of great heuristic value and enabled
this theory to reach important results in a short time. Unfortunately, how-
ever, it often turned out that impatient scientists in various fields applied
the terminology and the theorems of Communication Theory to fields in
which the term “information” was used, presystematically, in a semantic
sense, that is, one involving contents or designata of symbols, or even
in a pragmatic sense, that is, one involving the users of these symbols
(Bar-Hillel & Carnap, 1953, p. 147).

By contrast, they put forward a theory of semantic information, in which the
contents of symbols were “decisively involved in the definition of the basic con-
cepts” and “an application of these concepts and of the theorems concerning
them to fields involving semantics thereby warranted” (Bar-Hillel & Carnap,
1953, p. 148). The basic idea is simple and can be briefly explained as follows.

Suppose we are interested in the weather forecast for tomorrow and that we
focus only on the possible truth values of the two sentences “tomorrow will rain”
(R) and “tomorrow will be windy” (W ). Then, there are four possible relevant
states of the world, described by the following conjunctions:

R∧W R∧¬W ¬R∧W ¬R∧¬W.

Now, the sentence “tomorrow it will rain and will be windy” is intuitively more
informative than the sentence “tomorrow it will rain”. We can explain this by
noticing that it excludes more possibilities, i.e, more possible (relevant) states
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of the world. On the other hand, the sentence “tomorrow it will rain or will not
rain” conveys no information, since it does not exclude any possible state. So,
it seems natural to identify the information conveyed by a sentence with the set
of all “possible worlds” that are excluded by it, and to assume that its measure
should be somehow related to the size of this set.

The same basic idea, identifying the information carried by a sentence with
the set of the possible states that it excludes, had already made its appearance
in Popper’s Logic of Scientific Discovery (1934), where it played a crucial rôle
in defining the “empirical content” of a theory and in supporting Popper’s cen-
tral claim, namely that the most interesting scientific theories are those that are
highly falsifiable, while unfalsifiable theories are devoid of any empirical con-
tent:

The amount of positive information about the world which is con-
veyed by a scientific statement is the greater the more likely it is to clash,
because of its logical character, with possible singular statements. (Not
for nothing do we call the laws of nature “laws”: the more they prohibit
the more they say.) (Popper, 1959, p. 19). [. . .]

It might then be said, further, that if the class of potential falsifiers
of one theory is “larger” than that of another, there will be more oppor-
tunities for the first theory to be refuted by experience; thus compared
with the second theory, the first theory may be said to be “falsifiable in a
higher degree”. This also means that the first theory says more about the
world of experience than the second theory, for it rules out a larger class
of basic statements. [. . .] Thus it can be said that the amount of empirical
information conveyed by a theory, or its empirical content, increases with
its degree of falsifiability. (Popper, 1959, p. 96).

The theory of semantic information so provided what is, to date, the strongest
justification for the thesis that deductive reasoning is “tautological”. Indeed, an
inevitable consequence of this theory is that all logical truths are equally un-
informative (they exclude no possible world). But in classical logic a sentence
B is deducible from a finite set of premises A1, . . . ,An if and only if the condi-
tional (A1 ∧ . . .∧An)→ B is a tautology. Accordingly, since tautologies carry
no information at all, no logical inference can yield an increase of information.
Therefore, if we identify the semantic information carried by a sentence with the
set of all possible worlds it excludes, we must also accept the inevitable conse-
quence that, in any valid deduction, the information carried by the conclusion is
contained in the information carried by the (conjunction of) the premises. While
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this theory seems to justify the empiricist dogma that logic is “analytic”, it ap-
pears to be at odds with our intuitions and clash with the commonsense notion
of information. As Michael Dummett put it:

Once the justification of deductive inference is perceived as philo-
sophically problematic at all, the temptation to which most philosophers
succumb is to offer too strong a justification: to say, for instance, that
when we recognize the premises of a valid inference as true, we have
thereby already recognized the truth of the conclusion (Dummett, 1991,
p. 195).

In fact, such a definitive foundation for deductive practice is obtained at the
price of its trivialization. Logic lies on a bedrock of platitude.

2.3. The enduring scandal of deduction

Cohen and Nagel were among the first to point out that the traditional tenet
that logical deduction is devoid of any informational content sounds paradoxi-
cal:

If in an inference the conclusion is not contained in the premises, it
cannot be valid; and if the conclusion is not different from the premises, it
is useless; but the conclusion cannot be contained in the premises and also
possess novelty; hence inferences cannot be both valid and useful (Cohen
& Nagel, 1934, p. 173)

A few decades later Jaakko Hintikka described this paradox as a true “scandal
of deduction”:

C.D. Broad has called the unsolved problems concerning induction a
scandal of philosophy. It seems to me that in addition to this scandal of
induction there is an equally disquieting scandal of deduction. Its urgency
can be brought home to each of us by any clever freshman who asks, upon
being told that deductive reasoning is “tautological” or “analytical” and
that logical truths have no “empirical content” and cannot be used to make
“factual assertions”: in what other sense, then, does deductive reasoning
give us new information? Is it not perfectly obvious there is some such
sense, for what point would there otherwise be to logic and mathematics?
(Hintikka, 1973, p. 222).

For Ludwig Wittgenstein, the whole problem was, needless to say, a pseudo-
problem, arising from our use of an imperfect language.9 In his Tractatus,

9 This topic is discussed in detail in (Carapezza & D’Agostino, 2010).
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Wittgenstein raises the question of an “adequate notation” through which each
sentence shows its meaning, where the latter is to be identified with the pos-
sibility of its being true or false: “The sense of a proposition is its agreement
and disagreement with the possibilities of the existence and non-existence of the
atomic facts.” (T. 4.2). While the truth of an elementary propositions consists
in the existence or non-existence of a certain fact about the world, the truth of
complex propositions depends on the logical relations between the elementary
propositions occurring in them: complex propositions are truth functions of the
elementary propositions. Thus, the meaning of a proposition consists in the con-
ditions under which it is true or false, and an adequate notation should be able
to show these conditions explicitly: “a proposition shows its sense” (T. 4.022).
Nevertheless, “[in common language] it is humanly impossible to deduce the
logic of language” (T. 4.002), because the grammatical structure does not mir-
ror the logical structure of the sentence itself. The logic underlying linguistic
utterances could instead be made evident by a more appropriate symbolism, one
capable of making it immediately visible without resorting to any “deductive
process”.

In a logically perfect language the recognition of tautologies should be im-
mediate. Since the deducibility of a certain conclusion from a given set of
premises is equivalent to the tautologyhood of the conditional whose antecedent
is the conjunction of the premises and whose consequent is the conclusion of the
inference, then the correctness of any inference would prove, in a symbolism of
the kind, to be immediately visible. So, given a “suitable notation”, logical
deduction could actually be reduced to the mere inspection of propositions:

When the truth of one proposition follows from the truth of others,
we can see this from the structure of the propositions. [Tractatus, 5.13]

In a suitable notation we can in fact recognize the formal properties of
propositions by mere inspection of the propositions themselves. [6.122].

Every tautology itself shows that it is a tautology. [6.127(b)]

In accordance with Wittgenstein’s idea, one could specify a procedure that trans-
lates sentences into a “perfect notation” that fully brings out the information
they convey, for instance by computing the whole truth-table for the conditional
which represents the inference. Such a table displays all the relevant possible
worlds and allows one to distinguish immediately those that make a sentence
true from those that make it false, the latter representing (collectively) the “se-
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mantic information” carried by the sentence. Once the translation has been
performed, logical consequence can be recognized by “mere inspection”

Thus, if information could be fully unfolded by means of some mechanical
translation into a “perfect logical language”, the scandal of deduction could be
avoided without appealing to psychologism. Sometimes we fail to immediately
“see” that a conclusion is implicit in the premises because we express both in a
concise notation, a sort of stenography that prevents us from fully recognizing
the formal properties of propositions until we decode it into an adequate nota-
tion. From this point of view, semantic information would be a perfectly good
way of specifying the information carried by a sentence with reference to an
algorithmic procedure of translation.

Although this idea may seem to work well for propositional logic, one can
easily see how the Church-Turing undecidability theorem excludes the possi-
bility of a perfect language, in Wittgenstein’s sense, for first-order logic: since
first-order logical truth is undecidable, we can never find an algorithm to trans-
late every sentence into a perfect language in which its tautologyhood could be
immediately decided by mere inspection. This negative result is also the main
motivation for Hintikka’s criticism of Bar-Hillell and Carnap’s notion of seman-
tic information.

[. . .] measures of information which are not effectively calculable
are well-nigh absurd. What realistic use can there be for measures of
information which are such that we in principle cannot always know (and
cannot have a method of finding out) how much information we possess?
One of the purposes the concept of information is calculated to serve is
surely to enable us to review what we know (have information about) and
what we do not know. Such a review is in principle impossible, however,
if our measures of information are non-recursive (Hintikka, 1973, p. 228).

Hintikka’s positive proposal consists in distinguishing between two objective
and non-psychological notions of information content: “surface information”,
which may be increased by deductive reasoning, and “depth information” (equiv-
alent to Bar-Hillel and Carnap’s “semantic information”), which may not. While
the latter justifies the traditional claim that logical reasoning is tautological, the
former vindicates the intuition underlying the opposite claim. In his view, first-
order deductive reasoning may increase surface information, although it never
increases depth information (the increase being related to deductive steps that
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introduce new individuals). Without going into details,10 we observe here that
Hintikka’s proposal classifies as non-analytic only some inferences of the non-
monadic predicate calculus so leaves the “scandal of deduction” unsettled in the
domain of propositional logic:

The truths of propositional logic are [. . .] tautologies, they do not
carry any new information. Similarly, it is easily seen that in the logically
valid inferences of propositional logic the information carried by the con-
clusion is smaller or at most equal to the information carried by the pre-
misses. The term “tautology” thus characterizes very aptly the truths and
inferences of propositional logic. One reason for its one-time appeal to
philosophers was undoubtedly its success in this limited area (Hintikka,
1973, p. 154).

Hence, in Hintikka’s view, for every finite set of Boolean sentences Γ and every
Boolean sentence A,

(2) If Γ ` A the information carried by A is included in the informa-
tion carried by Γ.

As argued in the introduction, this is highly unsatisfactory given the likely in-
tractability of Boolean logic. Thus, some degree of uncertainty about whether
or not a certain conclusion follows from given premises cannot be, in general,
completely eliminated even in the restricted and “simple” domain of proposi-
tional logic. So, if we take seriously the time-honoured and common-sense
concept of information, according to which information consists in relieving us
from uncertainty, we should conclude that in some cases learning that a certain
conclusion logically follows from the premises does relieve us from uncertainty,
and therefore increases our information, even at the propositional level. A well-
known example is the solution of an “expert level” sudoku, which is surely
informative for ordinary solvers even if it follows from the initial information
by propositional logic only. The scandal of deduction has recently received
renewed attention leading to a number of original contributions (e.g., (Prim-
iero, 2008, Ch. 2), (Sequoiah-Grayson, 2008), (Sillari, 2008b), (D’Agostino &
Floridi, 2009), (Duẑı́, 2010), (Jago, 2012) that do not appear, however, to be
reducible to a single conceptual paradigm.

10 For a criticism of Hintikka’s approach see (Sequoiah-Grayson, 2008).
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2.4. The BHC paradox

Another straightforward consequence of Bar-Hillel and Carnap’s theory of
“semantic information” is that contradictions, like “tomorrow it will rain and it
will not rain”, carry the maximum amount of information, since they exclude
all possible states. Bar-Hillel and Carnap were well aware that their theory of
semantic information sounded counterintuitive in connection with contradictory
(sets of) sentences, as shown by the near-apologetic remark they included in
their (1953):

It might perhaps, at first, seem strange that a self-contradictory sen-
tence, hence one which no ideal receiver would accept, is regarded as car-
rying with it the most inclusive information. It should, however, be em-
phasized that semantic information is here not meant as implying truth. A
false sentence which happens to say much is thereby highly informative in
our sense. Whether the information it carries is true or false, scientifically
valuable or not, and so forth, does not concern us. A self-contradictory
sentence asserts too much; it is too informative to be true (Carnap & Bar-
Hillel, 1953, p. 229).

Popper had also realized that his closely related notion of empirical content
worked reasonably well only for consistent theories. For, all basic statements
are potential falsifiers of all inconsistent theories, which would therefore, with-
out this requirement, turn out to be the most scientific of all. So, for him, “the
requirement of consistency plays a special rôle among the various requirements
which a theoretical system, or an axiomatic system, must satisfy” and “can be
regarded as the first of the requirements to be satisfied by every theoretical sys-
tem, be it empirical or non-empirical” (Popper, 1959, p. 72). So, “whilst tautolo-
gies, purely existential statements and other unfalsifiable statements assert, as it
were, too little about the class of possible basic statements, self-contradictory
statements assert too much. From a self-contradictory statement, any statement
whatsoever can be validly deduced” (Popper, 1959, p. 71). In fact, what Popper
claimed was that the information content of inconsistent theories is null, and
so his definition of information content as monotonically related to the set of
potential falsifiers was intended only for consistent ones:

But the importance of the requirement of consistency will be appre-
ciated if one realizes that a self-contradictory system is uninformative. It
is so because any conclusion we please can be derived from it. Thus no
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statement is singled out, either as incompatible or as derivable, since all
are derivable. A consistent system, on the other hand, divides the set of
all possible statements into two: those which it contradicts and those with
which it is compatible. (Among the latter are the conclusions which can
be derived from it.) This is why consistency is the most general require-
ment for a system, whether empirical or non-empirical, if it is to be of any
use at all (Popper, 1959, p. 72).

2.5. The problem of logical omniscience in epistemic logic

The anomalies of the received view on classical logic carry over to the
widely studied logics of knowledge (epistemic logic) and belief (doxastic logic),
as well as to the more recent attempts to axiomatize the “logic of being in-
formed” (information logic).11 If an agent a knows (or believes, or is informed)
that a sentence A is true, and B is a logical consequence of A, then a is supposed
to know (or believe, or be informed) also that B is true. This is often described
as paradoxical and labelled as “the problem of logical omniscience”. Let �a

express any of the propositional attitudes at issue, referred to the agent a. Then,
the “logical omniscience” assumption can be expressed by saying that, for any
finite set Γ of sentences,

(3) if �aA for all A ∈ Γ and Γ ` B, then �aB,

where ` stands for the relation of logical consequence. Observe that, letting
Γ = /0, it immediately follows from (3) that any rational agent a is supposed to
be aware of the truth of all classical tautologies, that is, of all the sentences of
a standard logical language that are “consequences of the empty set of assump-
tions”. In most axiomatic systems of epistemic, doxastic and information logic
assumption (3) emerges from the combined effect of the “distribution axiom”,
namely
(K) �a(A→ B)→ (�aA→�aB)

and the “necessitation rule”:

(N) if ` A, then `�aA.

11 For a survey on epistemic and doxastic logic see (Halpern, 1995; Meyer, 2003). For
information logic, or “the logic of being informed”, see (Floridi, 2006; Primiero, 2009).
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On the other hand, despite its paradoxical flavour, (3) seems an inescapable
consequence of the standard Kripke-style semantical characterization of the log-
ics under consideration. The latter is carried out in terms of structures of the
form (S,τ,R1, . . . ,Rn), where S is a set of possible worlds, τ is a function that
associates with each possible world s an assignment τ(s) of one of the two truth
values (0 and 1) to each atomic sentence of the language, and each Ra is the “ac-
cessibility” relation for the agent a. Intuitively, if s is the actual world and sRat,
then t is a world that a would regard as a “possible” alternative to the actual
one, i.e., compatible with what a knows (or believes, or is informed of). Then,
the truth of complex sentences is defined, starting from the initial assignment
τ , via a forcing relation �. This incorporates the usual semantics of classical
propositional logic and defines the truth of �aA as “A is true in all the worlds
that a regards as possible”. In this framework, given that the notion of truth in
a possible world is an extension to the modal language of the classical truth-
conditional semantics for the standard logical operators, (3) appears to be both
compelling and, at the same time, counter-intuitive.

Now, under this reading of the consequence relation `, which is based on
classical propositional logic, (3) may perhaps be satisfied by an “idealized rea-
soner”, in some sense to be made more precise,12 but is not satisfied, and is
not likely to ever be satisfiable, in practice. As mentioned in the introduction,
even restricting ourselves to the domain of propositional logic, the theory of
computational complexity tells us that the decision problem for Boolean logic
is co-NP-complete. So, the clash between (3) and the classical notion of logical
consequence, which arises in any real application context, may only be solved
either by waiving the assumption stated in (3), or by waiving the consequence
relation of classical logic in favour of a weaker one with respect to which it may
be safely assumed that the modality �a is closed under logical consequence for
any realistic agent.

12 It should be noted that the appeal to an “idealized reasoner” has usually the effect of
sweeping under the rug a good deal of interesting questions, including how idealized such a
reasoner should be. Idealization may well be a matter of degree.
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Both options have been discussed in the literature.13 Observe that, according
to the latter, the problem of logical omniscience does not lie in assumption (3)
in itself, but rather in the standard (classical) characterization of logical conse-
quence for a propositional language that is built in the possible-world semantics
originally put forward by Jaakko Hintikka as a foundational framework for the
investigation of epistemic and doxastic logic.

Frisch (1987) and Levesque (1988) were among the first authors to explore
this route and argue for a notion of “limited inference” based on “a less ideal-
ized view of logic, one that takes very seriously the idea that certain compu-
tational tasks are relatively easy, and others more difficult” (Levesque, 1988),
p. 355. A more recent (and related) proposal can be found in (Fagin et al.,
1995), where the authors suggest to replace classical logic with a non-standard
one, deeply rooted in relevance logic and called NPL (for “Nonstandard Propo-
sitional Logic”), to mitigate the problem of logical omniscience. The mitigation
consists mainly in the existence of a polynomial time decision procedure for
the CNF fragment of the proposed logical system ((Fagin et al., 1995, Theo-
rem 7.4)). However, the decision problem for the unrestricted language of NPL
is still co-NP-complete (Theorem 6.4). Moreover, NPL shares with relevance
logic and with Levesque’s notion of limited inference the invalidity of disjunc-
tive syllogism (from A∨B and ¬A one cannot infer B) which sounds disturbing
to most classical ears. Finally, the NPL-based approach does not allow, in a
natural way, for the possibility of defining degrees of logical omniscience, that
may apply to increasingly idealized reasoning agents, in terms of correspond-
ingly stronger consequence relations. On the other hand, the possibility of char-
acterizing in a uniform way such a hierarchy of approximations to the “perfect
reasoner” (which may well be a classical one) would certainly allow for all the
flexibility needed by a suitable model of practical rationality.

13 See (Meyer, 2003) (Section 4), (Halpern, 1995) (Section 4) and (Kwang, 1997) for a sur-
vey and proper references. See also: (Parikh, 2008) for an interesting third view that draws on
the tradition of subjective probability, and (Artemov & Kuznets, 2009) for an approach based on
proof size. A general semantic framework in which several different approaches can be usefully
expressed is that based on “awareness structures”, which draws on the distinction between “ex-
plicit” and “implicit” knowledge, to the effect that an agent may implicitly know that a sentence
is a logical consequence of a set of assumptions, without being aware of it. See (Sillari, 2008a,b)
for an insightful discussion of this framework and proper references to the literature.
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In the next section we shall outline a sort of “informational view” of classical
propositional logic that provides a natural solution to the the approximation
problem raised in the introduction as well as paving the way for a solution of
the anomalies of the received view discussed in this section.

3. An informational view of classical logic

In this section we outline the basic principles of an informational semantics for
the logical operators. We survey two kinds of such semantics — constraint-
based and modular — introduced, respectively, in (D’Agostino & Floridi, 2009)
and (D’Agostino et al., 2013), which admit of natural proof-theoretical charac-
terizations. The deductive arguments that can be justified on the basis of this
informational semantics are a specific subset of the classical valid arguments,
namely those that no make use of any “virtual information”, that is do not sim-
ulate information that is not even implicitly contained in the data. However, full
Boolean logic can be indefinitely approximated by allowing the use of virtual
information up to a given fixed depth. Finally we suggest how this informational
approach can solve the anomalies of the received view.

3.1. Informational semantics

What is a “sensible” semantics for the logical operators? Classical logicians
have a straightforward answer to this question: the time-honoured semantics
based on the classical truth-tables that fix the meaning of each logical operator
] by fixing the conditions under which a sentence containing ] as main logical
operator is true or false in terms of the truth or falsity of its immediate con-
stituents. Such conditions provide an explanation of the meaning of the logical
operators in terms of the two central notions of truth and falsity, which are as-
sumed as understood. It is regarded as essential to the understanding of these
notions that they obey the classical principles of bivalence (each sentence, in
a given state of affairs, is either determinately true or determinately false) and
non-contradiction (no sentence can be at the same time true and false in the
same state of affairs). Both principles can be concisely expressed by assuming
that a sentence is false if and only if it is not true.

This approach has been severely criticized as too “metaphysical”. As Weir
puts it:
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[Classical semantics] has come under a great deal of attack, especially
from those who subscribe to the Wittgensteinian slogan that meaning is
use and interpret it as requiring that all ingredients of meaning can be
made manifest in our use of sentences, especially in teaching or com-
municating their senses, for it is often claimed that classical bivalent se-
mantics, in ascribing truth-values to sentences regardless of whether these
values are discoverable, violates this requirement (Weir, 1986, p. 459).

A less “metaphysical” approach might consist in replacing classical truth and
falsity, as central notions of the theory of meaning, with other, more accessible
ones. The standard answer is intuitionistic logic, where the meaning of the log-
ical operators may indeed be explained (with some difficulty) in terms of a no-
tion of truth as provability or verifiability that is not recognition-transcendent.14

Indeed, the well-known Kripke semantics defines logical consequence as truth-
preserving over states that Kripke himself intuitively described as “points in
time (or ‘evidential situations’), at which we may have various pieces of infor-
mation” (Kripke, 1965, p. 100). However, given the complexity issues discussed
in the introduction, intuitionistic validity cannot, in general, be recognized in
practice by any realistic agent who is in a given partial information state. A
problematic feature is that the truth of some complex sentences at an informa-
tion state s cannot be established without “visiting” information states that are
essentially richer than s. For example, in order to recognize that a conditional
A→ B is true at a state s in which A is not true, a reasoning agent must ideally
transfer from s to a “virtual” state s∗ in which the antecedent A is true and any
other sentence has the same value as in s; that is, the agent reasons as if his state
were s∗, observes that in s∗ the consequent B must be true as well, and concludes
that A→ B must be true in his real information state s.

This use of “virtual information” is part of our common reasoning practice
and is not too problematic as long as the structure of the sentence whose truth
is being evaluated keeps simple. However, when recognizing the sentence as
true requires weaving in and out of a complex recursive pattern of virtual infor-
mation states, the situation may soon get out of control, as shown by the fact
that the decision problem for the pure implicational fragment of intuitionistic
logic is also PSPACE complete (Statman, 1979; Svejdar, 2003). The neces-

14 These issues, and all the subtleties that they involve, have been thoroughly discussed in
the logical literature, especially in the writings of Michael Dummett; the reader is referred to
(Dummett, 1991) for an overall picture.
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sity of venturing out of one’s actual information state in order to recognize the
truth of certain sentences is what makes such inference steps “non-analytic” in
a sense very close to Kant’s original sense:15 we essentially need to go beyond
the data, using “virtual information”, i.e., simulating situations in which we
hold information that we do not actually hold. Although all virtual information
is eventually removed, to the effect that the truth of a the conditional sentence
depends only on the information initially available, it remains true that such in-
ference steps could not be performed at all without (temporarily) trespassing on
richer information states.

A second problematic feature is the treatment of disjunction. In Kripke
semantics a disjunction A∨ B is true at an information state s if and only if
either A is true at s or B is true at s. This reflects the intuitionistic notion of
truth as (conclusive) verification, more precisely, the idea that the truth of a
sentence coincides with the existence of a canonical proof for it, that is, a proof
obtained “by the most direct means”. In a natural deduction system this is a
proof whose last step is the application of an introduction rule.16 Indeed, in
intuitionistic terms, we have a canonical proof of A∨B if and only if we have
either a canonical proof of A or a canonical proof of B. However this does not
seem to be a compelling feature of our understanding of ∨ in relation to a more
ordinary notion of “information state”, in which the truth of a sentence may be
licensed by some weaker kind of epistemic condition.

It is not difficult to come up with intuitive examples in which we hold
enough information to assert a disjunction as true, but we do not hold enough
information to assert either of the two disjuncts as true. Suppose we put two
bills of 50 and 100 euros in two separate envelopes and then we shuffle the en-
velopes so as to loose track of which contains which. If we pick up one of them,
we certainly hold the information that it contains either a 50-euro bill or a 100-
euro bill, but we do not hold the information that it contains a 50-euro bill, nor
do we hold the information that it contains a 100-euro bill.17

These difficulties have been addressed in (D’Agostino & Floridi, 2009) and

15 See (D’Agostino & Floridi, 2009) on this point.
16 See (Dummett, 1991) (Chapter 11) and (Prawitz, 2006) for a thorough discussion.
17 This example is particularly tricky in that we could claim that we have, in some sense,

arrived at the disjunction in a canonical way, except that the information has decayed during the
process of shuffling the envelopes.
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(D’Agostino, 2013) on the basis of an informational semantics for classical
propositional logic in which the meaning of the Boolean operators is fixed ex-
clusively in terms of the information that we actually possess. The primary
notions of this semantics are not truth and falsity, but informational truth and
informational falsity, namely holding the information that a sentence is true, re-
spectively false. Here, by saying that an agent x holds the information that A
is true (respectively false) we mean that this is information that is practically
available to x and with which x can operate. Clearly these notions do not obey
the classical Principle of Bivalence (or, better, its informational version). We
cannot assume that for every sentence A either we hold the information that A
is true or we hold the information that A is false. However, we may assume that
they satisfy the informational version of the Principle of Non-Contradiction: no
agent can actually possess both the information that A is true and the informa-
tion that A is false, as this would be deemed to be equivalent to possessing no
definite information about A.

We use the values 1 and 0 to denote, respectively, informational truth and
falsity. When a sentence takes neither of these two defined values, we say that
it is informationally indeterminate.18 We call partial valuation any partial map-
ping from the set of well-formed formulae of a standard propositional language
L to the the set {1,0} of the two determinate informational values. We write
v(A) = ⊥ as shorthand for “v(A) is undefined”, that is A is informationally in-
determinate.19

Partial valuations can be interpreted in a variety of ways. According to one
interpretation v(A) = 1 means intuitively that A is true, v(A) = 0 that A is false
and v(A) =⊥ that A is neither-true-nor-false. According to another, which is the
one we shall adopt in this paper, a partial valuation v represents the information
held by a given agent a about the truth or falsity of sentences; v(A) = 1 means “a
holds the information that A is true” , v(A) = 0 means “a holds the information
that A is false” and v(A) =⊥ means “a holds no information about the truth or
falsity of A”.20

18 This is the symbol for “undefined”, the bottom element of the information ordering, not
to be confused with the “falsum” logical constant.

19 Here ⊥ is the symbol for “undefined”, the bottom element of the information ordering,
not to be confused with the “falsum” logical constant.

20 For other interpretations of partial valuations, see (Blamey, 1986).
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3.2. Constraint-based semantics

In valuation-based approaches, the intended meaning of the logical opera-
tors is usually specified by defining, within the set of all possible valuations,
those which are admissible, i.e. those that comply with this intended meaning.
Admissible valuations are usually defined by specifying a set of necessary and
sufficient conditions that a valuation should satisfy. The usual conditions for the
Boolean operators are the following:

C1 v(A) = 1 if and only if v(¬A) = 0;

C2 v(A∧B) = 1 if and only if v(A) = 1 and v(B) = 1;

C3 v(A∨B) = 1 if and only if v(A) = 1 or v(B) = 1;

C4 v(A→ B) = 1 if and only if v(A) = 0 or v(B) = 1.

C5 v(A) = 0 if and only if v(¬A) = 1;

C6 v(A∧B) = 0 if and only if v(A) = 0 or v(B) = 0;

C7 v(A∨B) = 0 if and only if v(A) = 0 and v(B) = 0;

C8 v(A→ B) = 0 if and only if v(A) = 1 and v(B) = 0.

A valuation satisfying the above conditions is said to be saturated. More specif-
ically, we say that a valuation v is upward saturated, if v satisfies the above con-
ditions in the “only-if” direction, and downward saturated if it satisfies them in
the “if” direction. A Boolean valuation is a saturated valuation that satisfies the
additional condition of being total, i.e. defined for all sentences. Observe that,
for total valuations, conditions C5–C8 are redundant, in that they can be derived
from conditions C1–C4.

According to the standard view, the intended meaning of the classical logical
operators is fixed by accepting only Boolean valuations as admissible. Moving
from their classical to their informational meaning, not only must the require-
ment of total valuations be dropped, but also some of the saturation conditions
become obviously unsound. In particular, when represented as valuations, in-
formation states are not downward saturated. Indeed, as explained above, it
may well be the case, under the ordinary notion of information, that we hold
the information that a disjunction is true or the information that a conjunction is
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false without holding any information about the component sentences. There-
fore, in general, when both A and B are informationally indeterminate, the value
of their conjunction A∧B may be either informational falsity 0, or informational
indeterminacy ⊥, depending on whether or not we hold the information that A
and B cannot be simultaneously true. And the value of their disjunction A∨B
may be either informational truth 1 or informational indeterminacy ⊥, depend-
ing on whether or not we hold the information that at least one of A and B must
be true.21 In this context, admissible valuations cannot be specified by means
of necessary and sufficient conditions such as C1–C8. All we can do is specify
a set of negative constraints, which restrict the domain of all possible valua-
tions to those which are compliant with the intended (informational) meaning
of the logical operators. In (D’Agostino & Floridi, 2009) the meaning of the
logical operators is characterized in terms of such negative constraints on the
admissible partial valuations for L .

Let us call L -module any set consisting of a non-atomic L -formula, called
the top formula of the module, and of its immediate subformulae. We shall
denote by Mod(A) the unique L -module whose top formula is A. The infor-
mational meaning of a logical operator ] can be fixed by determining which
subvaluations of Mod(A) are not admissible for a formula A containing ] as the
main operator. This is a negative way of defining this meaning. It allows us to
detect valuations that are immediately forbidden to any agent who “understands”
it. For example, a valuation such that v(A∨B) = 1,v(A) = 0 and v(B) = 0 would
clearly be inadmissible and therefore provides a negative constraint that can be
taken as part of the definition of “∨”.

These negative constraints are summarized in Table 1, where each line rep-
resents a minimal non-admissible valuation (the asterisk means that the corre-
sponding informational value of the sentence may indifferently be true, false or
indeterminate). A valuation v is admissible if, for every formula A, v does not
contain any subvaluation of Mod(A) that is ruled out by the accepted constraints
expressing the informational meaning of the main operator of A. We shall denote

21 As far as the operator ∨ is concerned, its informational meaning we are trying to charac-
terize clearly departs from its intuitionistic meaning, according to which a disjunction A∨B is
intuitionistically true (roughly speaking, provable22) if and only if either A is intuitionistically
true or B is intuitionistically true. This is the so-called disjunction property of intuitionistic logic.
While this property is appropriate for (constructive) mathematics, it is quite at odds with ordinary
usage outside mathematics.
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¬A A
1 1
0 0

A∨B A B
1 0 0
0 1 ∗
0 ∗ 1

A∧B A B
1 0 ∗
1 ∗ 0
0 1 1

A→ B A B
1 1 0
0 ∗ 1
0 0 ∗

TABLE 1: The informational meaning of the logical operators. Each line rep-
resents a minimal non-admissible valuation.

by A the domain of all admissible valuations. Admissible valuations are par-
tially ordered by the usual approximation relation v defined as follows: v v w
(read “w is a refinement of v” or “v is an approximation of w”) if and only if
w agrees with v on all the formulae A for which v(A) 6= ⊥. We can identify a
partial valuation v with a set of pairs of the form 〈A, i〉, where A is a sentence in
the given language and i is equal to 0 or 1, such that for no A, 〈A,1〉 and 〈A,0〉
are both in v. Each of these pairs can be thought of as a “piece of information”
and the partial valuation itself as an attempt to put together such pieces of in-
formation in a way which is consistent with the intended meaning of the logical
operators. Under this interpretation v(A) = 1 means that 〈A,1〉 ∈ v, v(A) = 0
that 〈A,0〉 ∈ v and v(A) =⊥ that neither of these two pieces of information is in
v. The partial ordering v is a meet-semilattice with a bottom element equal to
/0, the valuation which is undefined for all formulae of the language. It fails to
be a lattice because the join of two admissible valuations may be inadmissible.

Now, consider a valuation v such that v(A∨B) = 1 and v(A) = 0, while B
is undefined. We can legitimately say that the value of B in this valuation is
implicitly determined by the values of A∨B and A and by our understanding of
the meaning of ∨ based on the constraints specified in Table 1. For, there is no
admissible refinement of v such that v(B) = 0, since such a refinement would
fail to satisfy one of the constraints that define the meaning of “∨”. In other
words, any assignment other than 1 would be immediately recognized as incon-
sistent by any agent that understands ∨ via the specified constraints. Notice that

27



MARCELLO D’AGOSTINO

checking whether a possible refinement of a valuation regarding a specific for-
mula B is admissible is a task that can be performed in linear time on the basis
of local information. It involves only checking all the modules that contain B. If
assigning a certain value to B violates one of the constraints, which are specified
in terms of the modules containing B, then the valuation is not admissible.

Hence, if we understand the meaning of∨, we are able to detect immediately
that B cannot be assigned, consistently with this meaning, the value 0, given that
A∨B has been assigned the value 1 and A the value 0. In such a situation, we can
say that the information concerning the value of B is implicitly contained in our
information state — in particular, in that portion of it concerning Mod(A∨B),
i.e. A∨B and its immediate subformulae — because the intended meaning of ∨
leaves us no option about this value. This is comparable, interestingly, to what
happens in those easy steps of the sudoku game where the digit to be inserted in
a given empty cell is dictated by the digits already inserted in the cells belonging
to the regions into which the empty cell is contained. (Recall that a “region” in
the classic version of the sudoku game is either a column, or a row or one of
the four sub-squares into which the main square is divided. In our context, a
“region” is simply the locale of a formula.) This is the most basic consistency
principle by means of which logical inference can be justified analytically, that
is, by virtue of the informational meaning of the logical operators as specified
by the constraints in Table 1.

Given a valuation v, let us say that a piece of information 〈A, i〉, with i ∈
{0,1}, is implicitly contained in v at depth 0, and write v 0 〈A, i〉, if the com-
plementary piece of information 〈A, |1− i|〉 is immediately ruled out solely
by virtue of the meaning of the logical operators, that is, if extending v with
〈A, |i−1|〉 makes it non-admissible by violating one of the constraints specify-
ing the intended meaning of the main logical operator of A. In symbols (recall-
ing that A is the set of admissible valuations):

(4) v 0 〈A, i〉 ⇐⇒ v∪{〈A, i〉} 6∈A .

Notice that, according to the above definition, if 〈A, i〉 ∈ v, then v 0 〈A, i〉,
since v∪〈A, |i− 1|〉 is trivially inadmissible in that it is not a partial valuation.
A minimal requirement on an information state is that it is closed under the
implicit information that immediately stems from the meaning constraints. So,
an admissible valuation v is a shallow information state if it satisfies:

(5) v 0 〈A, i〉=⇒ 〈A, i〉 ∈ v
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A shallow information state is a Boolean valuation if and only if it contains a
total valuation of all the atomic formulae of the language. So, Boolean valua-
tions can be seen as shallow information states that are closed under a Principle
of Omniscience, the informational counterpart of the classical Principle of Bi-
valence:

For every information state v and every atomic sentence p, either p is
true in v or p is false in v.

Example 3.1. Consider an admissible valuation v such that

1. v(p∨q) = 1

2. v(p) = 0

3. v(q→ r) = 1

4. v(q→ s) = 1

5. v(¬t→¬(r∧ s)) = 1

6. v(t ∧u) = 0.

We show that v′(u) = 0 for every shallow information state that contains v,
i.e. for every admissible valuation closed under D0 which contains v. From
(i) and (ii), by the constraints on ∨, it follows that v′ ∪{〈q,0〉} would be non-
admissible. So, v′ 0 〈q,1〉 and, by D0:

7. v′(q) = 1.

Then, from (vii) and (iii) it follows that v′∪{〈r,0〉} would be non-admissible by
the meaning constraints on→. Hence, v′ 0 〈r,1〉, and by D0 again:

8. v′(r) = 1.

The remaining steps of the argument are similar and can be summarized as
follows:

9. v′(s) = 1, by (iv), (vii), the meaning constraints on→ and D0.

10. v′(r∧ s) = 1, by (viii), (ix), the meaning constraints on ∧ and D0.
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11. v′(¬(r∧ s)) = 0, by (x), the meaning constraints on ¬ and D0.

12. v′(¬t) = 0, by (v), (xi), the meaning constraints on→ and D0.

13. v′(t) = 1, by (xii), the meaning constraints on ¬ and D0.

14. v′(u) = 0, by (vi), (xiii), the meaning constraints on ∧ and D0.

Intuitively, a shallow information state represents the overall information
that a reasoner holds, either explicitly or implicitly, on the sole basis of the
intended (informational) meaning of the logical operators and of the basic con-
sistency principle expressed by the closure condition D0.

In what follows we shall make use of signed formulae (S-formulae for short),
namely expressions of the form T A or F A with the intended meaning of “A
is informationally true” and “A is informationally false”. This choice allows
us to express an information state V as a set of S-formulae, namely the set
{T A | v(A) = 1}∪ {F A | v(A) = 0}. We shall use “ϕ,ψ,θ , . . .”, as variables
ranging over S-formulae. We shall also use “X ,Y,Z,. . .”, as variables ranging
over sets of S-formulae and “Γ,∆,Λ, . . .”, as variables ranging over sets of un-
signed formulae.

Let us say that an information state v satisfies an S-formula T A if V (A) = 1
and an S-formula F A if v(A) = 0. For every set X of S-formulae and every
S-formula ϕ , we say that:

• ϕ is a 0-depth consequence of X if v satisfies ϕ for every information state
v such that v satisfies all the S-formulae in X .

• X is 0-depth inconsistent if there is no information state v such that v
satisfies all the S-formulae in X .

We use the symbol “�0” for the 0-depth consequence relation and write “X �0
ϕ” for “ϕ is a 0-depth consequence of X”. The notions of 0-depth consequence
and 0-depth inconsistency can be extended to unsigned formulae by stipulating
that an unsigned formula A is a 0-depth consequence of a set Γ of unsigned
formulae if and only if T Γ �0 T A and that Γ is 0-depth inconsistent if and only
if T Γ is 0-depth inconsistent. In (D’Agostino et al., 2013) (Proposition 2.49) it
is shown that 0-depth consequence is not a (finite) many-valued logic, that is, it
cannot be characterized by any set of finitely valued matrices.
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F A
T ¬A

T¬-I T A
F¬A

F¬-I

T A
T A∨B

T∨-I 1 T B
T A∨B

T∨-I 2
F A
F B

F A∨B
F∨-I

F A
F A∧B

F∧-I 1 F B
F A∧B

F∧-I 2
T A
T B

T A∧B
T∧-I

F A
T A→ B

T→-I 1 T B
T A→ B

T→-I 2
T A
F B

F A→ B
F→-I

TABLE 2: Introduction rules for the standard Boolean operators.

It is not difficult to show that he relation �0 is a logic in Tarski’s sense, that
is, it satisfies the following conditions:

A �0 A(Reflexivity)

Γ �0 A =⇒ Γ∪∆ �0 A(Monotonicity)

Γ �0 A and Γ∪{A} �0 B =⇒ Γ �0 B.(Cut)

Γ �0 A =⇒ σΓ �0 σA for all substitutions σ(Substitution Invariance)

where σ∆ is short for {σA|A ∈ ∆}.

3.3. Intelim sequences

A natural proof-theoretical characterization of the 0-depth consequence re-
lation �0 is obtained by means of a set of introduction and elimination rules
(intelim rules) for the logical operators. These rules are shown in Tables 2 and
3 and are expressed in terms of S-formulae. A version of these rules for un-
signed formulae is obtained by removing all the occurrences of the sign T and
replacing all the occurrences of the sign F with the negation sign ¬.

Given a set X of S-formulae:
• An intelim sequence for X is a sequence ϕ1, . . .ϕn of S-formulae such that,

for every i = 0, . . . ,n, either ϕi ∈ X or is the conclusion of the application
of an intelim rule to preceding formulae.
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T ¬A
F A

T¬-E F¬A
T A

F¬-E

T A∨B
F A
T B

T∨-E 1
T A∨B

F B
T A

T∨-E 2 F A∨B
F A

F∨-E 1 F A∨B
F B

F∨-E 2

F A∧B
T A
F B

F∧-E 1
F A∧B

T B
F A

F∧-E 2 T A∧B
T A

T∧-E 1 T A∧B
T B

T∧-E 2

T A→ B
T A
T B

T→-E 1
T A→ B

F B
F A

T→-E 2 F A→ B
T A

F→-E 1 F A→ B
F B

F→-E 2

TABLE 3: Elimination rules for the four standard Boolean operators

• An intelim sequence is closed when it contains both T A and F A for some
A.

• An intelim refutation of X is a closed intelim sequence for X .

• A intelim proof of ϕ from X is an intelim sequence for X such that ϕ is
the last S-formula in the sequence.

• X is intelim-refutable if there is a closed intelim sequence for X .

• An S-formula ϕ is intelim deducible from X if there is an intelim proof of
ϕ from X .

In Figure 1 we show simple examples of intelim sequences using, respectively,
the intelim rules for signed formulae and their version for unsigned formulae.
We use the symbol “`0” to denote the relation of intelim-deducibility and write
“X `0 ϕ” for “ϕ is a 0-depth deducible from X”.

Again, we can extend the notions of intelim deducibility and refutability
to unsigned formulae by stipulating that an unsigned formula A is intelim de-
ducible from a set Γ of unsigned formulae if T A is intelim deducible from
T Γ and that a set Γ of unsigned formulae is intelim refutable if T Γ is intelim
refutable.
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1 T (p∨q)→¬r Assumption
2 T p Assumption
3 T (p∧ t)→ r Assumption
4 T p∨q T∨-I 1 (2)
5 T ¬r T →-E 1 (1,4)
6 F r T¬-E (5)
7 F (p∧ t) T →-E 2 (3,6)
8 F t F∧-E 1 (7,2).

1 (p∨q)→¬r Assumption
2 p Assumption
3 (p∧ t)→ r Assumption
4 p∨q T∨-I 1 (2)
5 ¬r T →-E 1 (1,4)
6 ¬(p∧ t) T →-E 2 (3,5)
7 ¬t F∧-E 1 (6,2).

FIG. 1: On the left, an intelim sequence using the rules for signed formulae. On
the right the corresponding sequence using the rules for unsigned formulae.

The unsigned part of an S-formula is the unsigned formula that results from
it by removing the sign T or F . Given an S-formula ϕ , we denote by ϕu the un-
signed part of ϕ . We say that an intelim proof of ϕ from X (an intelim refutation
of X) has the subformula property (SFP) if, for every S-formula ψ occurring in
it, ψu is a subformula of θ u for some θ in X ∪{ϕ} (in X).

For an intelim sequence π , let |π| denote the length of π .

Proposition 3.2 (Subformula Property).

1. For every intelim proof π of ϕ from X:

• if π is an open intelim sequence, π can be transformed into an inte-
lim proof π ′ of ϕ from X such that π ′ has the SFP and |π ′| ≤ |π|;

• if π is a closed intelim sequence, there is an intelim refutation π ′ of
X such that π ′ has the SFP and |π ′| ≤ |π|.

2. For every intelim refutation π of X, π can be transformed into an intelim
refutation π ′ of X such that π ′ has the SFP and |π ′| ≤ |π|.

A proof of the subformula property for generalized intelim systems with
arbitrary Boolean operators can be found in (D’Agostino et al., 2013). The sub-
formula property of intelim proofs and refutations paves the way for a feasible
decision procedure for intelim deducibility and refutability. A generalization of
the following proposition is also proven in (D’Agostino et al., 2013).

Proposition 3.3. Whether or not X `0 ϕ (X is 0-depth refutable) can be decided
in time O(n2) where n is the total number of occurrences of symbols in X ∪{ϕ}
(in X).
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T A∨A
T A

T∨-mingle F A∧A
F A

F∧-mingle

TABLE 4: Mingle rules for ∨ and ∧.

The reader can verify that all the intelim rules are sound, namely that the
conclusion is a 0-depth logical consequence of the premises. As for com-
pleteness, there is a technical point which must be taken care of. It follows
from the principle D0 above that in every shallow information state such that
v(A∨A) = 1, it must hold true that v(A) = 1. Similarly, in every shallow infor-
mation state such that v(A∧A) = 0 it must hold true that v(A) = 0. So, the value
of A is by all means dictated, in both cases, by the value of A∨A (A∧A) and by
the intended meaning of ∨ (∧) as specified by the meaning constraints. How-
ever, our intelim rules do not allow us, as they stand, to infer T A from T A∨A,
or F A from F A∧A, This technical problem can be addressed in two different
ways:

1. we pre-process all formulae and replace every occurrence of A∨A, re-
spectively A∧A, with A;

2. we introduce the two sound “mingle” rules in Table 4 in addition to the in-
telim rules in Tables 2 and 3; this solution is the same as the one adopted in
(Finger & Gabbay, 2006) in response to a similar problem arising in their
investigations into tractable subsystems of classical propositional logic.

Both solutions appear quite reasonable, although not terribly elegant. The first
one requires restrictions on the language that do not undermine its expressive
power. The second solution requires the addition of ad hoc rules that somehow
spoil the harmony of the intelim approach, but are, on the other hand, perfectly
justified by the aim of extracting all the information that can possibly be ob-
tained on the sole basis of the meaning of the logical operators. A more elegant
solution would consist in recognizing that the traditional approach, based on
standard inference rules, is perhaps not ideal to represent the flow of logical in-
formation, and revert to a less traditional approach based on logical networks,
along the lines suggested in the Appendix of (D’Agostino & Floridi, 2009).

Let us call intelim∗ the set consisting of the intelim rules in Tables 2-3 and
of the mingle rules in Table 4 and assume the notions of intelim+-sequence,
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intelim∗ deduction and intelim∗ refutation are defined as above replacing “inte-
lim” with “intelim∗”. Then we have the following:

Proposition 3.4. For every finite set Γ of sentences and every sentence A, Γ�0 A
if and only if there is an intelim∗ deduction of A from Γ.

Clearly the tractability of intelim-deducibility extends to intelim∗-deducibility.
Hence the 0-depth logic is truly informationally closed in that there exists a sim-
ple feasible procedure for deciding whether the information that the conclusion
is true is implicitly contained, by virtue of the informational meaning of the
logical operators, in the information that the premises are true.

3.4. Modular semantics

In this section we present a variant of the constraint-based semantics first
introduced in (D’Agostino et al., 2013). Under this “modular semantics” the
mingle rules of Table 4 are no longer sound and so a completeness theorem
can be shown with respect to the pure intelim rules of Table 2 and 3. Here we
consider any propositional language L with arbitrary Boolean operators and
regard partial valuations as total mappings from the well-formed formulae of
L to {0,1,⊥}. So“⊥” is no longer just a notational device for expressing that
a valuation v is undefined for a given argument, but denotes a third “indetermi-
nate” value. We call these mappings 3-valuations.

We take the three values as partially ordered by the relation � such that
x� y (“x is less defined than, or equal to, y”) if, and only if, x =⊥ or x = y for
x,y ∈ {0,1,⊥}. As before, 3-valuations are partially ordered by the usual ap-
proximation relation v defined as follows: vv w if and only if v(A)� w(A) for
all A. The set of all 3-valuations partially ordered byv forms a meet-semilattice
with a bottom element consisting of the 3-valuation that takes the undefined
value for all formulae. We denote by vuw the meet of the 3-valuations v and w.
In this setting an “information state” will be a special kind of 3-valuation that
(i) is “locally” compatible with the classical truth-table and (ii) is closed under
a most basic kind of implicit information.

First, we need to pick out, from the set of all 3-valuations, those that agree
with the classical truth-tables. In the presence of the “indeterminate” value ⊥,
this can be done in a variety of ways. Here we describe a modular approach,
in which agreement is checked only “locally” with respect to the main logical
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operator of a formula, ignoring the other operators that may occur in it, that is,
treating the operands as if they were (distinct) atomic formulae.

Recall that an L -module is a set consisting of a non-atomic L -formula,
called the top formula of the module, and of its immediate subformulae that
we call secondary formulae. As in the previous section we shall denote by
Mod(A) the unique L -module whose top formula is A. A valuation module is
any mapping α : Mod(A)→ {0,1,⊥}, where A is some non-atomic formula.
Given a 3-valuation v, we say that α is a module of v if α = v | dom(α).

By extension, we shall call top formula of α the top formula of dom(α) (the
domain of α), and main operator of α the main operator of the top formula of
α .

For each non-atomic formula B = ?(A1, . . . ,An) and each i = 1, . . . ,n+1, let

πi(B) =def

{
Ai if 1≤ i≤ n
B if i = n+1

In the sequel we shall use the boldface letters x,y,z, etc. to denote finite vectors
with values in {0,1,⊥}. For each valuation module α : Mod(A)→ {0,1,⊥},
the value vector of α , denoted by

→
α , is the vector x ∈ {0,1,⊥}a+1, where a

is the arity of the main logical operator of A, such that xi = α(πi(A)) for all
i = 1, . . . ,a+1.

We say that a vector x∈ {0,1,⊥}n approximates a vector y∈ {0,1,⊥}n, and
write x� y if, and only if, xi � yi for all i = 1, . . . ,n. Notice that, for every fixed
n, the set of all vectors in {0,1,⊥}n partially ordered by� is a meet semilattice.
We denote by x∧y the meet of x and y. For each n-ary operator ?, let us denote
by A? the set of all vectors in {0,1,⊥}n+1 that approximate some vector in the
graph of f? (i.e., the Boolean function associated with ?), namely the set

{x | ∃y(x� y and y ∈ f?)},

where by “y ∈ f?” we mean that y belongs to the graph of f?. Let M? denote the
set of all valuation modules α such that the top formula of α is a ?-formula. A
module α ∈M? is admissible iff its value vector

→
α is in A?. A 3-valuation v is

admissible iff all its modules are admissible. Thus an admissible 3-valuation is
one that conveys partial information about the sentences of the given language
in a way that agrees with the Boolean truth-tables for the logical operators in
the modular sense specified above: the value assigned to each formula A is
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compatible with those assigned to its immediate subformulae according to the
truth-table for the main logical operator of A.

Now, we explain what it means, in this setting, that a certain piece of infor-
mation, specifying that a given sentence is true or false, is “implicitly contained”
in the information that is explicitly conveyed by a partial valuation v. Let us de-
note by x[i := z], for z ∈ {0,1,⊥} the vector y such that yi = z and y j = x j for
all j 6= i. For every n-ary operator ?, a vector x ∈A? is stable in A? if, and only
if, for every i, 1≤ i≤ n+1,

xi =⊥=⇒ x[i := 0] ∈A? and x[i := 1] ∈A?.

In other words, a stable approximation of a vector in the graph of f? is a vector
such that each of its “undefined” components may indifferently take, in some
better approximation, either of the two defined values 0 and 1. On the other
hand, a vector in A? is unstable whenever, for some of its undefined compo-
nents, one of the two possible defined values is ruled out by the truth-table for
?, and so the other one is uniquely determined as the only possible defined value
that this component can take. A valuation module α ∈M? is informationally
closed iff

→
α is a stable element of A?. A valuation v is informationally closed

if all its modules are informationally closed. If α is not informationally closed,
that is,

→
α is unstable, then there is an A ∈ dom(α) such that α(A) = ⊥, but α

carries implicit information about A, because there is a defined value for A that
is deterministically dictated by the truth-table for the main operator of α . An
informationally closed module is one in which all such implicit information has
been made explicit. It is not difficult to verify that:
Proposition 3.5. For every n-ary operator ?, if x and y are both stable elements
of A?, their meet x∧y is also a stable element of A?.

This is sufficient to ensure that, for every α , the set of all informationally
closed β such that α v β has a minimum element. Therefore, for every valua-
tion v, the set of informationally closed 3-valuations w such that vv w also has
a minimum element. Now, we can say that a 3-valuation is an information state
if it is informationally closed.

Examples 3.6. According to the above definition, the module α described by
the following table:

(6)
p∨q p (p∨q)∧ p

1 ⊥ 0
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is admissible, because its value vector
→
α = (1,⊥,0) approximates the vector

(1,0,0) which is in the graph of f∧ (since f∧(1,0) = 0). On the other hand, the
following modules:

(7)
p∨ r q→ s (p∨ r)∧ (q→ s)

0 ⊥ 1
p∧ r q (p∧ r)∨q

1 ⊥ 0
,

are not admissible, because (0,⊥,1) does not approximate any vector in the
graph of f∧ and (1,⊥,0) does not approximate any vector in the graph of f∨.

The following modules

(8)
p∨ r q→ s (p∨ r)∧ (q→ s)
⊥ ⊥ 0

p∧ r q (p∧ r)∨q
⊥ ⊥ 1

,

are informationally closed. The first module, is informationally closed because
its value vector (⊥,⊥,0) is a stable element of A∧, that is, the vectors (0,⊥,0),
(1,⊥,0), (⊥,0,0) and (⊥,1,0) are all in A∧. The second one is information-
ally closed because its value vector (⊥,⊥,1) is a stable element of A∨, that is,
(0,⊥,1), (1,⊥,1), (⊥,0,1) and (⊥,1,1) are all in A∨. On the other hand, the
module (6) is not informationally closed, because (1,1,0) is not in A∧.

Observe that under this definition of information state: (i) every Boolean
valuation is an information state; (ii) for every information state v, if v(A) 6=
⊥ for all well-formed formulae A of L , then v is a Boolean valuation. The
consequence relation of depth 0, |=0 can now be defined as in the previous
section: for every set X of S-formulae and every S-formula ϕ , X |=0 ϕ if and
only if ϕ is satisfied by every information state that satisfies all the S-formulae
in X . (Notice the the symbol |=0 is slightly different from the symbol �0 used
in the constraint-based semantics of the previous section.) Again |=0 is a logic
in Tarski’s sense, that is, it is closed under Reflexivity, Monotonicity, Cut and
Substitution Invariance. However, the notion of information state defined in
terms of this modular semantics is different (slightly weaker) than the notion
of information state defined in terms of the constraint-based semantics of the
previous section. Indeed, as anticipated, the consequence relation |=0 defined
in terms of the modular semantics is faithful to the deducibility relation based
on the intelim rules only, since the mingle rules turn out to be unsound. So we
have the following:

Proposition 3.7. For every finite set Γ of sentences and every sentence A, Γ |=0
A if and only if there is an intelim deduction of A from Γ.
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3.5. Virtual information and depth-bounded deduction

In Sections 3 and 3 we have introduced two related basic mechanisms for
extracting implicit information from the data (expressed by a partial valuation)
by virtue of the intended (informational) meaning of the logical operators. Any
“deeper” processing of the data must introduce and use information that is not
uniquely determined in this way. For example, to establish that r is a Boolean
consequence of p∨q, p→ r and q→ r, we start with the partial valuation v such
that

v(A) =

{
1 if A ∈ {p∨q, p→ r,q→ r}
⊥ otherwise

Given the subformula property of intelim deducibility, the only valuation mod-
ules of v that are significant for the deduction problem under consideration are
those extensionally described by the following diagrams (the links represent the
subformula relation):

S-formulas in X. (Notice the the symbol |=0 is slightly di↵erent from the
symbol ✏0 used in the constraint-based semantics of the previous section.)
Again |=0 is a logic in Tarski’s sense, that is, it is closed under Reflexivity,
Monotonicity, Cut and Substitution Invariance. However, the notion of
information state defined in terms of this modular semantics is di↵erent
(slighlty weaker) than the notion of information state defined in terms of the
constraint-based semantics of the previous section. Indeed, as anticipated,
the consequence relation |=0 defined in terms of the modular semantics is
faithful to the deducibility relation based on the intelim rules only, since the
mingle rules turn out to be unsound. So we have the following:

Proposition 3.7. For every finite set � of sentences and every sentence A,
� |=0 A if and only if there is an intelim deduction of A from �.

3.5 Virtual information and depth-bounded deduction

In Sections 3.2 and 3.4 we have introduced two related basic mechanisms
for extracting implicit information from the data (expressed by a partial
valuation) by virtue of the intended (informational) meaning of the logical
opeerators. Any “deeper” processing of the data must introduce and use
information that is not uniquely determined in this way. For example, to
establish that r is a Boolean consequence of p _ q, p ! r and q ! r, we
start with the partial valuation v such that

v(A) =

(
1 if A 2 {p _ q, p ! r, q ! r}
? otherwise

Given the subformula property of intelim deducibility, the only valuation
modules of v that are significant for the deduction problem under consider-
ation are those extensionally described by the following diagrams (the links
represent the subformula relation):

hp _ q, 1i

hp,?i hq,?i

hp ! r, 1i

hp,?i hr,?i

hq ! r, 1i

hq,?i hr,?i

These valuation modules are all informationally closed: in each of them
there is no way of determining the value of some undefined formula from
the information explicitly stored in the module. To extract the information
that r must be true, we necessarily have to consider possible refinements
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These valuation modules are all informationally closed: in each of them there
is no way of determining the value of some undefined formula from the infor-
mation explicitly stored in the module. To extract the information that r must
be true, we necessarily have to consider possible refinements of v containing in-
formation that is not implicitly determined by it. For example, we can consider
its possible alternative refinements v1 and v2 such that v1(p) = 1, v2(p) = 0
and v1(A) = v2(A) = v(A) for all A 6= p. Both such refinements of v contain
information concerning p that is not contained in v. This is what we call virtual
information. We may assume that either v1 or v2 must “eventually” obtain, that
is, one of the two valuations will eventually express the information that is ex-
plicitly held by the given agent. Or, alternatively, argue that either v1 or v2 must
agree with all “possible worlds” that agree with v. In either case, the relevant
modules of v1 and v2 are, respectively,
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of v containing information that is not implicitly determined by it. For
example, we can consider its possible alternative refinements v1 and v2 such
that v1(p) = 1, v2(p) = 0 and v1(A) = v2(A) = v(A) for all A 6= p. Both
such refinements of v contain information concerning p that is not contained
in v. This is what we call virtual information. We may assume that either
v1 or v2 must “eventually” obtain, that is, one of the two valuations will
eventually express the information that is explicitly held by the given agent.
Or, alternatively, argue that either v1 or v2 must agree with all “possible
worlds” that agree with v. In either case, the relevant modules of v1 and v2

are, respectively,

hp _ q, 1i

hp, 1i hq,?i

hp ! r, 1i

hp, 1i hr,?i

hq ! r, 1i

hq,?i hr,?i

and

hp _ q, 1i

hp, 0i hq,?i

hp ! r, 1i

hp, 0i hr,?i

hq ! r, 1i

hq,?i hr,?i

It is easy to check that, in both cases, the least valuation (with respect to
the v relation) in which all the relevant modules are informationally closed
must verify r. So, we may wish to conclude that the piece of information
that r is true is also implicitly contained in v. However, this essentially
requires the consideration of refinements of v that contain what we have
calle virtual information, in the above example the information that p is
true in v1 and the information that p is false in v2, namely information that
is not implicitly contained in the original valuation v.

The unbounded use of virtual information, in the way just explained,
turns an information state into a Boolean valuation. A natural way of
approximating Boolean valuations, starting from the information states de-
fined in Section 3.2 or in Section 3.4 — which correspond to the basis case
in which no virtual information is allowed — consists in imposing an upper
bound on the depth at which the nested use of virtual information is allowed.
In [D’Agostino et al., 2013] the reader can find a discussion of a variety of
ways in which such approximations can be defined. Here we focus on a par-
ticularly simple approach based on the notion of intelim tree introduced in
[Mondadori, 1989] and further developed in [D’Agostino, 2005].
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hp, 1i hq,?i

hp ! r, 1i

hp, 1i hr,?i

hq ! r, 1i

hq,?i hr,?i

and

hp _ q, 1i

hp, 0i hq,?i

hp ! r, 1i

hp, 0i hr,?i

hq ! r, 1i

hq,?i hr,?i
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that p is false in v2, namely information that is not implicitly contained in the
original valuation v.

The unbounded use of virtual information, in the way just explained, turns
an information state into a Boolean valuation. A natural way of approximating
Boolean valuations, starting from the information states defined in Section 3 or
in Section 3 — which correspond to the basis case in which no virtual informa-
tion is allowed — consists in imposing an upper bound on the depth at which
the nested use of virtual information is allowed. In (D’Agostino et al., 2013) the
reader can find a discussion of a variety of ways in which such approximations
can be defined. Here we focus on a particularly simple approach based on the
notion of intelim tree introduced in (Mondadori, 1989) and further developed in
(D’Agostino, 2005).

Given a set of formulae Γ, we use the notation Sub(Γ) to denote the set of
all subformulae of the formulae in Γ. For all k ∈ N+, the relation |=k is defined
as follows:

1. X |=k ϕ if and only if X ∪{T A} |=k−1 ϕ and X ∪{F A} |=k−1 ϕ for some
A ∈ Sub(Xu∪{ϕu});
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2. X is k-depth inconsistent if and only if X ∪{T A} and X ∪{F A} are both
k−1-depth inconsistent for some A ∈ Sub(Xu).

Observe that, since |=0 is monotonic, |= j⊆|=k whenever j ≤ k. The transition
from |=k to |=k+1 corresponds to an increase in the depth at which the nested
use of virtual information is allowed. It is not difficult to show that:

Proposition 3.8. The relation |=∞=
⋃

k∈N |=k is the consequence relation of
classical propositional logic.

Given Proposition 3.4 and the definitions of k-depth consequence |=k and
k-depth inconsistency given above, the corresponding notions of k-depth de-
ducibility and k-depth refutability for k ∈ N+, are trivially defined as follows:
for all k ∈ N+,

1. X `k ϕ if and only if X ∪{T A} `k−1 ϕ and X ∪{F A} `k−1 ϕ for some
A ∈ Sub(Xu∪{ϕu});

2. X is k-depth refutable if and only if X ∪{T A} and X ∪{F A} are both
k−1-depth refutable for some A ∈ Sub(Xu).

As before, we extend the relations |=k and `k to unsigned formulae by stipulat-
ing that Γ |=k A (Γ `k A) if and only if T Γ |=k T A (T Γ `k T A). Similarly, we
stipulate that Γ is k-depth inconsistent (k-depth refutable) if and only if T Γ is
k-depth inconsistent (k-depth refutable).

While deductions of depth 0 are represented by intelim sequences, deduc-
tions of depth k > 0 may be aptly represented in the format of intelim trees. For
this purpose it is sufficient to add to the intelim rules the following branching
rule:23

T A
⌦⌦ JJ

F A

PB

1

Each application of this rule allows us to introduce virtual information concern-
ing an arbitrary formula A by appending both T A and F A as sibling nodes at the
end of any branch of the tree, generating two new branches. The formula A in-
volved in a specific application of the rule is called PB-formula. The S-formulae

23 “PB” stands for “Principle of Bivalence”.
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T A and F A are called virtual assumptions. Such a step invites us to consider
information states that, besides containing all the information expressed by the
preceding S-formulae in the branch, also contain definite information about the
truth or falsity of the PB-formula A. An intelim tree for X is a tree T of S-
formulae such that, for every S-formula ϕ in a branch of T , either

1. ϕ ∈ X , or

2. ϕ is obtained from preceding S-formulae in the same branch by an appli-
cation of an intelim rule, or

3. ϕ is a virtual assumption introduced by an application of the branching
rule PB.

We say that a branch of an intelim tree is closed if it contains both T A and F A
for some formula A, otherwise it is open. The depth of an intelim tree T is the
maximum number of virtual assumptions occurring in a branch of T . For all
k ∈ N,

1. A k-depth intelim proof of ϕ from X is an intelim tree T for X of depth
k such that ϕ occurs in all open branches of T ;

2. A k-depth refutation of X is an intelim tree T for X of depth k such that
every branch of T is closed.

For each intelim tree T , let us denote by PB(T ) the set of all PB-formulae
occurring in T .

Proposition 3.9. For all k ∈ N,

1. Every k-depth intelim proof T of ϕ from X can be transformed into a
k+ j-depth (with j≥ 0) intelim proof T ′ of ϕ from X such that PB(T ′)⊆
Sub(Xu∪ϕu).

2. every k-depth refutation T of X can be transformed into a k + j-depth
(with j ≥ 0) T ′ of X such that PB(T ′)⊆ Sub(Xu).

A proof of the above proposition can be adapted from (D’Agostino, 2005).
Let us say that an intelim proof T of ϕ from X (an intelim refutation T of X)
has the subformula property (SFP) if ψu ∈ Sub(Xu ∪ϕu) (ψu ∈ Sub(Xu)) for
every S-formula ψ occurring in T .
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Proposition 3.10. For all k ∈ N,

1. Every k-depth intelim proof T of ϕ from X such that PB(T )⊆ Sub(Xu∪
ϕu) can be transformed into a k-depth intelim proof T ′ of ϕ from X such
that T ′ has the SFP.

2. Every k-depth refutation T of X such that PB(T ) ⊆ Sub(Xu) can be
transformed into a k-depth refutation T ′ of X such that T ′ has the SFP.

Then, it is easy to show that:

Proposition 3.11. For all k ∈ N,

1. X `k ϕ if and only if, for some j ≤ k, there is a j-depth intelim proof T
of ϕ from X such that T has the SFP;

2. X is k-depth refutable if and only if for some j ≤ k, there is a j-depth
intelim refutation T of X such that T has the SFP.

An example of an intelim proof of depth 2with the SFP is given in Figure 2.
This is an intelim proof of T H from premises 1–6. The reader can check that
each S-formula that is not a premise either is obtained from previous S-formulae
on the same branch by an application of one of the intelim rules in Tables 2 and
3, or is one of the virtual assumptions introduced by the branching rule PB. All
the open branches end with the S-formula T H. The rightmost branch is closed
since it contains both T C and F C. Each open branch is a 0-depth intelim proof
of T H from the union of the initial premises 1–6 plus the virtual assumptions
introduced by the rule PB on that branch. Given Propositions 3.3 and 3.11 it
is not difficult to show that, for each fixed k, `k admits of a feasible decision
procedure:

Proposition 3.12. For each k∈N, whether or not X `k ϕ (X is k-depth refutable),
can be decided in time O(nk+2), where n is the total number of occurrences of
symbols in X ∪{ϕ} (in X).

As for the intelim rules, a version of PB for unsigned formulae is obtained
simply by removing the sign T and replacing the sign F with the negation sign.
Examples of intelim trees using the rules for unsigned formulae are given in
Figure 3. In each tree the premises are the formulae labelled with a circled “p”.
The first tree is a 1-depth intelim deduction of v from the premises. The second
is a 2-depth intelim deduction of v from the premises. The third is a 1-depth
intelim refutation of the premises.
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1 T A ! B

2 F ¬A ^ C

3 T (B _ D) ! (E ! H)

4 T (B _ D) ! (¬H ! E)

5 T ¬(C ^ D) ! (G ! H)

6 T ¬C ! (¬G ! (A _ C))

T A

T B

T B _ D

T E ! H

T ¬H ! E

T E

T H

◆◆ SS
F E

F ¬H

T H

⌘⌘ QQ
F A

T ¬A

F C

F C ^ D

T ¬(C ^ D)

T G ! H

T ¬C

T ¬G ! (A _ C)

T G

T H

◆◆ SS
F G

T ¬G

T A _ C

T C

⇥

1FIG. 2: An intelim proof of depth 2.
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p ! ¬q p�

q _ r p�

¬(r ^ ¬q) p�

p _ t p�

(t _ u) ! ¬s p�

¬v ! s p�

p

¬q

r

¬¬q

q
⇥

 TT
¬p

t

t _ u

¬s

¬¬v

v

(p _ z) ! q p�

¬(¬p ^ r) p�

(q _ s) ! (t ! v) p�

(q _ s) ! (¬v ! t) p�

¬(r ^ s) ! (u ! v) p�

¬r ! (¬u ! (p _ r)) p�

p _ z

q

q _ s

t ! ¬v

¬v ! t

t

v

 TT
¬t

¬¬v

v

,, ll
¬(p _ z)

¬p

¬r

¬(r ^ s)

u ! v

¬u ! (p _ r)

u

v

 TT
¬u

p _ r

r
⇥

p ! q p�

¬(p ^ q) p�

p _ ¬r p�

(¬r _ s) ! (¬p ! r) p�

p

q

¬q
⇥

⌦⌦ JJ
¬p

¬r

¬r _ s

¬p ! r

r
⇥

1

FIG. 3: Intelim trees for unsigned formulae
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3.6. Solving the anomalies of the received view

We now show how the informational view of classical logic outlined in the
previous sections may help to solve the anomalies of the received view discussed
in Section 2. In what follows, we use “information state” to refer ambiguously
to a partial valuation closed under implicit information either in the sense of the
constraint-based semantics of Section 3 or in the sense of the modular semantics
of Section 3. Clearly the proposed notions of information content will reflect
the differences in these two notions of information state. In either case in this
section we think of an information state as a set S of pieces of information of
the form 〈A,1〉 or 〈A,0〉 such that for no A, 〈A,1〉 and 〈A,0〉 are both in S.

The set S of all information states is naturally ordered by set inclusion.
Every non-empty subset P of S has a meet in S given by

⋂
P . On the

other hand, two information states might not have a join in S . Indeed, if two
information states are mutually inconsistent they have no upper bounds in S .
Observe also that, even when two information states have a join in S this is
not, in general, their set union. For example, the join in S of two information
states containing, respectively, 〈p∨q,1〉 and 〈p,0〉, must contain also the signed
sentence 〈q,1〉 that may not be contained in either of them. Given a subset P of
S , let Pu be the set of all upper bounds of P in S . Then, P has a join in S
whenever Pu is non-empty, and this is given by

⋂
Pu. Now, since S itself has

no upper bounds in S , this ordering is topless. Let > be the set of all pieces of
information (which is not an information state) and let S ∗ = S ∪{>}. Then
(S ∗,⊆) is a complete lattice, where the meet of an arbitrary subset P of S ∗

is given by
⋂

P , while its join is equal either to the top element >, if Pu is
empty, or to

⋂
Pu otherwise.

Now, the surface information carried by a sentence A, INF(A) can be defined
as

(9) INF(A) =
l
{S ∈S | T A ∈ S}.

More generally, the surface information carried by a set Γ of sentences can
be defined as

(10) INF(Γ) =
l
{Y ∈S | Γ⊆ Y}.

Observe that, since
d

/0 =>, (10) yields INF(Γ) => whenever Γ is 0-depth
inconsistent, for there is no Y ∈ S that may include Γ. Recall that > is not
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an information state, but only denotes a situation in which all information is
“suspended” and can be rather interpreted as a call for revision. So> is concep-
tually distinct from the empty information state, that is, the partial valuation that
is undefined for all formulae. However, an agent whose informational situation
is described by > holds no genuine information just as any agent whose infor-
mation state is empty. Then, in order to be informative for an agent a, a (set of)
sentence(s) must be 0-depth consistent.

This requirement of 0-depth consistency (not classical consistency) can be
seen as a substantial mitigation of the “veridicality thesis” put forward by Lu-
ciano Floridi as a solution to the BHC paradox. Even if one is not willing to
endorse the somewhat controversial view that “information encapsulates truth”
(Floridi 2004 and Floridi 2011, Chapters 4–5), one can still maintain that a min-
imal interpretation of “holding information” is one that satisfies the requirement
that no agent may hold information that is explicitly inconsistent. And if a set of
sentences Γ is 0-depth inconsistent, no agent a can “hold the information” that
all the sentences in Γ are true, because adding Γ to a’s current information state
would destroy the latter as an information state.

The informativeness of Γ for an agent a, ιa(Γ) can be characterized as fol-
lows:

(11) ιa(Γ) = INF(INF(Sa∪Γ)∼ Sa),

where Sa is the current information state of a. Again, it follows from (11) that
ιa(Γ) => whenever Γ is 0-depth inconsistent.

On the basis of the above definitions, the 0-depth consequence relation can
be equivalently defined as follows:

Γ ` ϕ if and only if INF(ϕ)⊆ INF(Γ).

Hence, ` is informationally trivial, in that every agent that actually holds the
information that the premises are true must thereby hold the information that
the conclusion is true, or equivalently, the surface semantic information carried
by the conclusion is included in the surface semantic information carried by the
premises. The latter wording covers the limiting case in which the surface infor-
mation carried by the premises is>which do not qualify as genuine information
(> is not an information state).

It may be objected that the consequence relation |= is still “explosive” when
Γ is 0-depth inconsistent, for there is no information state for a that contains
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〈A,1〉 for all A ∈ Γ. So, if Γ is 0-depth inconsistent Γ |= A for every sentence
A. Similarly, if we follow the informational definition of 0-depth consequence
just given, when Γ is 0-depth inconsistent, INF(Γ) = > and so, for every A,
INF(A)⊆ INF(Γ). However, the problem raised by this kind of explosivity is far
less serious than the similar problem for the classical consequence relation. For,
we can detect that the premises are 0-depth inconsistent in feasible time. Unlike
hidden classical inconsistencies, that may be hard to discover even for agents
equipped with powerful (but still bounded) computational resources, 0-depth
inconsistency lies, as it were, on the surface. So, we always have a feasible
means to ensure that our premises are 0-depth consistent, in which case the
consequence relation |=0 is not explosive, even if these premises are classically
inconsistent.

We stress again that our definition of information state and surface infor-
mation do not require that information “encapsulates truth”, nor do they even
require that it “encapsulates consistency”, but only that information “encapsu-
lates surface (0-depth) consistency”. According to this characterization, |= is
informationally trivial by definition, and this is in accordance with the tenet that
analytic inferences are utterly uninformative. The valid inferences of |= are only
a subclass of the classically valid inferences and their validity can be recognized
in feasible time. These are the “easy” inferences that (nearly) everybody learns
to make correctly in the very process of learning the meaning of the logical
operators.

4. Conclusions

In (D’Agostino & Floridi, 2009) we described “virtual information” as infor-
mation that is by no means contained in the information carried by the premises
of an inference, but is still essentially, if only temporarily, involved in obtaining
the conclusion. It is the kind of provisional assumptions that occur in the so-
called “discharge rules” of Gentzen’s natural deduction and, more generally, in
any kind of “reasoning by cases”. For example, the following inference:

(12)

T A∨B
T A→C
T B→C

T C
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is classically valid, but cannot be immediately justified by means of the inte-
lim rules that mirror what we have called the “informational semantics” of the
logical operators.

An argument to show the validity of (12) based on these rules will have
necessarily to resort to an intelim tree such as the following:

T A _ B

T A ! C

T B ! C

T A

T C

⌦⌦ JJ
F A

T B

T C

1

Here, the information expressed by the signed sentences T A and F A is not, in
general, information that is actually held by the agent who holds the informa-
tion carried by the premises. It is virtual information that goes beyond what is
“given” in the premises. This use of virtual information, that is not contained
in the data and so may not be actually held by any agent who holds the informa-
tion carried by the data, appears to qualify this kind of argument as “synthetic”
in a sense close to Kant’s sense, in that it forces the agent to consider potential
information that is not included in the information “given” to him:

Analytical judgements (affirmative) are therefore those in which the
connection of the predicate with the subject is cogitated through identity;
those in which this connection is cogitated without identity, are called
synthetical judgements. The former may be called explicative, the latter
augmentative judgements; because the former add in the predicate noth-
ing to the conception of the subject, but only analyse it into its constituent
conceptions, which were thought already in the subject, although in a con-
fused manner; the latter add to our conceptions of the subject a predicate
which was not contained in it, and which no analysis could ever have
discovered therein. [. . .]
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T A

T A _ ¬A

�� @@
F A

T ¬A

T A _ ¬A

1

FIG. 4: An intelim tree of depth 1 proving the law of excluded middle.

In an analytical judgement I do not go beyond the given conception,
in order to arrive at some decision respecting it. [. . .] But in synthetical
judgements, I must go beyond the given conception, in order to cogitate,
in relation with it, something quite different from what was cogitated in it
[. . .]24

One could say, by analogy, that analytical inferences are those which are recog-
nized as sound via steps which are all “explicative”, that is, descending immedi-
ately from the (informational) meaning of the logical operators, while synthetic
ones are those that are “augmentative”, involving some intuition that goes be-
yond this meaning, i.e., in our case involving the consideration of virtual infor-
mation. So, we could paraphrase Kant and say that an inference is analytic only
if it adds in the conclusion nothing to the information contained in the premises,
but only analyses it in its constituent pieces of information, which were “thought
already in the premises, although in a confused manner”. The confusion van-
ishes once the meaning of the logical operators is properly explicated.

On the other hand, the synthetic inferences of classical propositional logic
are precisely those that essentially require the introduction, via the branching
rule PB, of virtual information. This is only the intuitive idea, the formal de-
tails are in (D’Agostino, 2005), (D’Agostino & Floridi, 2009) and (D’Agostino,

24 I. Kant, Critique of Pure Reason [1781], Book II, Chapter II, Section II. Quoted from the
english translation by J.M.D. Meiklejohn, ebooks Adelaide, 2009, http://ebooks.adelaide.
edu.au/k/kant/immanuel/k16p/index.html.
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2013). For each n ∈ N, `k is the consequence relation that allows for bounded
applications of this branching rule up to a given fixed depth k. A classically
valid inference can be said synthetic at degree k when k is the smallest natural
number such that the inference in question is provable in `k but not in `k−1. All
classical tautologies are synthetic at some degree greater than 0. For example,
the law of excluded middle is synthetic at degree 1, as shown by the argument
in Figure 4, proving the law of excluded middle from the empty set of premises.
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